IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
make devices invisible to lvm, but the behaviour of those is slightly different
than of actual missing devices. Running vgscan after re-enabling the device
triggers a metadata repair which is not done by vgremove -ff. This is not a
regression, merely an odd behaviour that has been around even before lvmetad.
Replace asserts with test for failing memory allocation.
Add at least stack traces.
Index counter starts from 1 (0 reserved for error), so replacing fingerprint.
Failure to do so results in "Performing unsafe table load while X device(s) are
known to be suspended" errors. While fixing the problem in this way works and
is consistent with the way the mirror segment type does it, it would be nice
to find a solution that uses the generic suspend/resume calls.
Also included in this check-in are additions to the test suite that perform
conversions on RAID LVs under a snapshot. These tests are disabled for the
time being due to a kernel bug that is yet to be tracked down.
Cleanup generated files from coverage testing.
Do not skip standard .o compilation for lib/not and lib/harness.
Make a bit longer string in harness to fit new shell/ in.
Simplify /api makefile and use SUBDIRS target for test dir.
Properly cleanup Makefiles with distclean in /test.
Use symbolic links for shell scripts for non-srcdir compilation.
bitset_t.c:39: warning: 'last' may be used uninitialized in this function
Compiler is not smart enough to see the code path which avoid using
unitialized 'last'.
tests from unit-tests/*/*_t.c (now under test/unit). The valgrind/pool test is
missing, since it's not really a unit test and probably not too valuable
either. Available via "make unit" (and if --enable-testing was passed to
configure, also executed by make check).
Removal of an inactive origin removes also all related snapshots.
When we now support 'old' external snapshots with thin volumes,
removal of pool will not only drop all thin volumes, but as
a consequence also all snapshots - which might be seen a bit
unexpected for the user - so add a query to confirm such action.
lvremove -f will skip the prompt.
grep need -F to check what we really want to test.
Add better test for existing device.
Currently this test DOES NOT work with real /dev handle via udev
since our tool does not see such device listet through udev.
FIXME: We might be able to see it at least through dmsetup table and
use for lvm.
Example:
~> lvconvert --type raid1 vg/mirror_lv
Steps to convert "mirror" to "raid1"
1) Allocate a RAID metadata LV for each mirror image from the same PVs
on which they are located.
2) Clear the metadata LVs. This involves writing LVM metadata, so we don't
change any aspects of the mirror LV before this so that the user can easily
remove LVs from the failed convert attempt while retaining the original
mirror.
3) Remove the mirror log, if it exists.
4) Add metadata LVs to mirror LV
5) Rename mirror sub-lvs (s/mimage/rimage/)
6) Change flags and segtype from mirror to raid1
Example:
~> lvconvert --type raid1 -m 1 vg/lv
The following steps are performed to convert linear to RAID1:
1) Allocate a metadata device from the same PV as the linear device
to provide the metadata/data LV pair required for all RAID components.
2) Allocate the required number of metadata/data LV pairs for the
remaining additional images.
3) Clear the metadata LVs. This performs a LVM metadata update.
4) Create the top-level RAID LV and add the component devices.
We want to make any failure easy to unwind. This is why we don't create the
top-level LV and add the components until the last step. Should anything
happen before that, the user could simply remove the unnecessary images. Also,
we want to ensure that the metadata LVs are cleared before forming the array to
prevent stale information from polluting the new array.
A new macro 'seg_is_linear' was added to allow us to distinguish linear LVs
from striped LVs.