IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
No longer use the external 'result' pointer internally to set up the
cached label. The callback _set_label_read_result() is now given the
internal label pointer directly
Callers that don't need the result are no longer required to pass a
label pointer into label_read().
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
In order to support striped raid5/6/10 LV reshaping (change
of LV type, stripesize or number of legs), this patch
introduces infrastructure prerequisites to be used
by raid_manip.c extensions in followup patches.
This base is needed for allocation of out-of-place
reshape space required by the MD raid personalities to
avoid writing over data in-place when reading off the
current RAID layout or number of legs and writing out
the new layout or to a different number of legs
(i.e. restripe)
Changes:
- add members reshape_len to 'struct lv_segment' to store
out-of-place reshape length per component rimage
- add member data_copies to struct lv_segment
to support more than 2 raid10 data copies
- make alloc_lv_segment() aware of both reshape_len and data_copies
- adjust all alloc_lv_segment() callers to the new API
- add functions to retrieve the current data offset (needed for
out-of-place reshaping space allocation) and the devices count
from the kernel
- make libdm deptree code aware of reshape_len
- add LV flags for disk add/remove reshaping
- support import/export of the new 'struct lv_segment' members
- enhance lv_extend/_lv_reduce to cope with reshape_len
- add seg_is_*/segtype_is_* macros related to reshaping
- add target version check for reshaping
- grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal
- enhance libdm deptree code to support data_offset (out-of-place reshaping)
and delta_disk (legs add/remove reshaping) target arguments
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
lvm1 and pool format do not support bootloader areas and we need to
remove any existing associated bootloader areas when we read lvm1 and
pool labels.
This has its importance if we're converting from one format to another
and we're reusing lvmcache in long-running commands (e.g. clvmd or lvm
shell) and we need to make lvmcache consistent and valid for current format.
Use process_each_vg() to lock and read the old VG,
and then call the main vgrename code.
When real VG names are used (not a UUID in place of the
old name), the command still pre-locks the new name
(when strcmp wants it locked first), before calling
process_each_vg on the old name.
In the case where the old name is replaced with a UUID,
process_each_vg now translates that UUID into the real
VG name, which it locks and reads. In this case, we
cannot do pre-locking to maintain lock ordering because
the old name is unknown. So, in this case the strcmp
based lock ordering is suppressed and the old name is
always locked first. This opens a remote chance for
lock ordering conflict between racing vgrenames between
two names where one or both commands use the UUID.
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
Move code for creation of thin volume into a single place
out of lv_extend(). This allows to drop extra pool arg
for alloc_lv_segment() && lv_extend() and makes code
more easier to read and follow.
Introduce FMT_OBSOLETE to identify pool metadata and use it and FMT_MDAS
instead of hard-coded format names.
Explain device accesses on pvscan --cache man page.
All labellers always use the "private" (void *) field as the fmt pointer. Making
this fact explicit in the type of the labeller simplifies the label reporting
code which needs to extract the format. Moreover, it removes a number of
error-prone casts from the code.
Changes:
- move device type registration out of "type filter" (filter.c)
to a separate and new dev-type.[ch] for common use throughout the code
- the structure for keeping the major numbers detected for available
device types and available partitioning available is stored in
"dev_types" structure now
- move common partitioning detection code to dev-type.[ch] as well
together with other device-related functions bound to dev_types
(see dev-type.h for the interface)
The dev-type interface contains all common functions used to detect
subsystems/device types, signature/superblock recognition code,
type-specific device properties and other common device properties
(bound to dev_types), including partitioning support.
- add dev_types instance to cmd context as cmd->dev_types for common use
- use cmd->dev_types throughout as a central point for providing
information about device types
Assign fid as the last step before returning VG.
Make the format reader for 'lvm1' and 'pool' equal to 'lvm2' format reader.
It has caused memory corruption to lvmetad as it later calls
destroy_instance() to allocated fid. This patch should fix problems
with crashing test lvmetad-lvm1.sh.
Move commod code to destroy orphan VG into free_orphan_vg() function.
Use orphan vgmem for creation of PV lists.
Remove some free_pv_fid() calls (FIXME: check all of them)
FIXME: Check whether we could merge release_vg back again for all VGs.
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
Before, we used vg_write_lock_held call to determnine the way a device is
opened. Unfortunately, this opened many devices in RW mode when it was not
really necessary. With the OPTIONS+="watch" rule used in the udev rules,
this could fire numerous events while closing such devices (and it caused
useless scans from within udev rules in return).
A common bug we hit with this was with the lvremove command which was unable
to remove the LV since it was being opened from within the udev rules. This
patch should minimize such situations (at least with respect to LVM handling
of devices).
Though there's still a possibility someone will open a device 'outside' in
parallel and fire the event based on the watch rule when closing a device
once opened for RW.
This is essential for proper format instance ref_count support. We must
use these functions to set the fid everywhere from now on, even the NULL
value!
Format instances can be created anytime on demand and it contains
metadata area information mostly (at least for now, but in the future,
we may store more things here to update/edit in a PV/VG). In case we
have lots of metadata areas, memory consumption will rise. Using cmd
context mempool is not quite optimal here because it is destroyed too
late. So let's use a separate mempool for format instances.
Reference counting is used because fids could be shared, e.g. each PV
has either a PV-based fid or VG-based fid. If it's VG-based, each PV has
a shared fid with the VG - a reference to VG's fid.
Create new function alloc_vg() to allocate VG structure.
It takes pool_name (for easier debugging).
and also take vg_name to futher simplify code.
Move remainder of _build_vg_from_pds to _pool_vg_read
and use vg memory pool for import functions.
(it's been using smem -> fid mempool -> cmd mempool)
(FIXME: remove mempool parameter for import functions and use vg).
Move remainder of the _build_vg to _format1_vg_read