IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Like opt and val arrays in previous commit, combine duplicate
arrays for lv types and props in command.c and lvmcmdline.c.
Also move the command_names array to be defined in command.c
so it's consistent with the others.
Change run time access to the command_name struct
cmd->cname instead of indirectly through
cmd->command->cname. This removes the two run time
fields from struct command.
The new check_single_lv() function is called prior to the
existing process_single_lv(). If the check function returns 0,
the LV will not be processed.
The check_single_lv function is meant to be a standard method
to validate the combination of specific command + specific LV,
and decide if the combination is allowed. The check_single
function can be used by anything that calls process_each_lv.
As commands are migrated to take advantage of command
definitions, each command definition gets its own entry
point which calls process_each for itself, passing a
pair of check_single/process_single functions which can
be specific to the narrowly defined command def.
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
When lvm commands are executed in lvm shell, we cover the whole lvm
command execution within this shell now. That means, all messages logged
and status caught during each command execution is now recorded in the
log report, including overall command's return code.
With patches that will follow, this will make it possible to widen log
report coverage when commands are executed from lvm shell so the amount
of messages that may end up in stderr/stdout instead of log report are
minimized.
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
Simplify code around _do_get_report_selection - remove "expected_idxs[]"
argument which is superfluous and add "allow_single" switch instead to
allow for recognition of "--configreport <report_name> -S" as well as
single "-S" if needed.
Null pointer dereferences (FORWARD_NULL) /safe/guest2/covscan/LVM2.2.02.158/tools/reporter.c: 961 in _do_report_get_selection()
Null pointer dereferences (FORWARD_NULL) Dereferencing null pointer "single_args".
Uninitialized variables (UNINIT) /safe/guest2/covscan/LVM2.2.02.158/tools/toollib.c: 3520 in _process_pvs_in_vgs()
Uninitialized variables (UNINIT) Using uninitialized value "do_report_ret_code".
Null pointer dereferences (REVERSE_INULL) /safe/guest2/covscan/LVM2.2.02.158/libdm/libdm-report.c: 4745 in dm_report_output()
Null pointer dereferences (REVERSE_INULL) Null-checking "rh" suggests that it may be null, but it has already been dereferenced on all paths leading to the check.
Incorrect expression (MISSING_COMMA) /safe/guest2/covscan/LVM2.2.02.158/lib/log/log.c: 280 in _get_log_level_name()
Incorrect expression (MISSING_COMMA) In the initialization of "log_level_names", a suspicious concatenated string ""noticeinfo"" is produced.
Null pointer dereferences (FORWARD_NULL) /safe/guest2/covscan/LVM2.2.02.158/tools/reporter.c: 816 in_get_report_options()
Null pointer dereferences (FORWARD_NULL) Comparing "mem" to null implies that "mem" might be null.
This patch adds structures and functions to reroute error and warning
logs to log report, if it's set.
There are 5 new functions:
- log_set_report
Set log report where logging will be rerouted.
- log_set_report_context
Set context globally so any report_cmdlog call will use it.
- log_set_report_object_type
Set object type globally so any report_cmdlog call will use it.
- log_set_report_object_name_and_id
Set object ID and name globally so any report_cmdlog call will use it.
- log_set_report_object_group_and_group_id
Set object group ID and name globally so any report_cmdlog call will use it.
These functions will be called during LVM command processing so any logs
which are rerouted to log report contain proper information about current
processing state.
The lvm fullreport works per VG and as such, the vg, lv, pv, seg and
pvseg subreport is done for each VG. However, if the PV is not part of
any VG yet, we still want to display pv and pvseg subreports for these
"orphan" PVs - so enable this for lvm fullreport's process_each_vg call.
If there's parent processing handle, we don't need to create completely
new report group and status report - we'll just reuse the one already
initialized for the parent.
Currently, the situation where this matter is when doing internal report
to do the selection for processing commands where we have parent processing
handle for the command itself and processing handle for the selection
part (that is selection for non-reporting tools).
Wire up report group creation with log report in struct
processing_handle and call report_format_init during processing handle
initialization (init_processing_handle fn) and destroy it while
destroing processing handle (destroy_processing_handle fn).
This way, all the LVM command processing using processing handle
has access to log report via which the current command log
can be reported as items are processed.
A number of places are working on a specific dev when they
call lvmcache_info_from_pvid() to look up an info struct
based on a pvid. In those cases, pass the dev being used
to lvmcache_info_from_pvid(). When a dev is specified,
lvmcache_info_from_pvid() will verify that the cached
info it's using matches the dev being processed before
returning the info. Calling code will not mistakenly
get info for the wrong dev when duplicate devs exist.
This confusion was happening when scanning labels when
duplicate devs existed. label_read for the first dev
would add an info struct to lvmcache for that dev/pvid.
label_read for the second dev would see the pvid in
lvmcache from first dev, and mistakenly conclude that
the label_read from the second dev can be skipped
because it's already been done. By verifying that the
dev for the cached pvid matches the dev being read,
this mismatch is avoided and the label is actually read
from the second duplicate.
pvmove began processing tags unintentionally from commit,
6d7dc87cb pvmove: use toollib
pvmove works on a single PV, but tags can match multiple PVs.
If we allowed tags, but processed only the first matching PV,
then the resulting PV would be unpredictable.
Also, the current processing code does not allow us to simply
report an error and do nothing if more than one PV matches the tag,
because the command starts processing PVs as they are found,
so it's too late to do nothing if a second PV matches.
In the same way that process_each_vg() can be passed
a single VG name to process, also allow process_each_lv()
to be passed a single VG name and LV name to process.
This refactors the code for autoactivation. Previously,
as each PV was found, it would be sent to lvmetad, and
the VG would be autoactivated using a non-standard VG
processing function (the "activation_handler") called via
a function pointer from within the lvmetad notification path.
Now, any scanning that the command needs to do (scanning
only the named device args, or scanning all devices when
there are no args), is done first, before any activation
is attempted. During the scans, the VG names are saved.
After scanning is complete, process_each_vg is used to do
autoactivation of the saved VG names. This makes pvscan
activation much more similar to activation done with
vgchange or lvchange.
The separate autoactivate phase also means that if lvmetad
is disabled (either before or during the scan), the command
can continue with the activation step by simply not using
lvmetad and reverting to disk scanning to do the
activation.