IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Replace the code with the refactored vgreduce_single instead
of calling its own implementation.
Corrects bug: https://bugzilla.redhat.com/show_bug.cgi?id=989174
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Moving the core functionality of vgreduce single into
lib/metadata/vg.c so that the command line and lvm2app library
can call the same core functionality. New function is
vgreduce_single.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Only reading a single PV works correctly only in very limited circumstances.
Moreover, we can't rely on the MDA available on the PV either, since it may be
out of date in some circumstances (until now, we believed that PVs that have an
empty MDA are always orphans, but this is not 100% reliable either).
There's a tiny race when suspending the device which is part
of the refresh because when suspend ioctl is performed, the
dm kernel driver executes (do_suspend and dm_suspend kernel fn):
step 1: a check whether the dev is already suspended and
if yes it returns success immediately as there's
nothing to do
step 2: it grabs the suspend lock
step 3: another check whether the dev is already suspended
and if found suspended, it exits with -EINVAL now
The race can occur in between step 1 and step 2. To prevent
premature autoactivation failure, we're using a simple retry
logic here before we fail completely. For a complete solution,
we need to fix the locking so there's no possibility for suspend
calls to interleave each other to cause this kind of race.
This is just a workaround. Remove it and replace it with proper
locking once we have that in!
Send error message on stdout, since after _display_info_long()
command return errors.
Patch makes consistent behavior for command:
dmsetup info -c non-existing-dev
&
dmsetup info non-existing-dev
Now both commands report error on stderr when they return error status
for non-existing device.
This is an addition to original patch for lvcreate - commit 039bdad.
The same principle applies to lvconvert where there are several steps
during which we need to wipe the existing LV that's being converted
to thin pool, making sure there's no other interference from outside (udev).
Remove conditional that boils down to "if yes or no, then do". The
previous condition in the statement is sufficient and the extra
(always true) condition is unnecessary.
Before, pvscan recognized either:
pvscan --cache --major <major> --minor <minor>
or
pvscan --cache <DevicePath>
When the device is gone and we need to notify lvmetad about device
removal, only --major/--minor works as we can't translate DevicePath
into major/minor pair anymore. The device does not exist in the system
and we don't keep DevicePath index in lvmetad cache to make the
translation internally into original major/minor pair. It would be
useless to keep this index just for this one exact case.
There's nothing bad about using "--major <major> --minor <minor>",
but it makes our life a bit harder when trying to make an
interconnection with systemd units, mainly with instantiated services
where only one and only one arg can be passed (which is encoded in the
service name).
This patch tries to make this easier by adding support for recognizing
the "<major>:<minor>" as a shortcut for the longer form
"--major <major> --minor <minor>". The rule here is simple: if the argument
starts with "/", it's a DevicePath, otherwise it's a <major>:<minor> pair.
Prohibit conversion of pool device with active thin volumes.
Properly restore active states only for active thin pool volume.
Use new LV_NOSCAN when converting volume into thin pool's metadata.
Patch 562ad293fd introduced code regression
when LV was converted to a thin LV with external origin and at the same time,
conversion of LV to a thin pool has been requested.
(RHBZ: #997704)
data_lv needs to be assigned after test for external conversion find pool.
Accept --ignoreskippedcluster with pvs, vgs, lvs, pvdisplay, vgdisplay,
lvdisplay, vgchange and lvchange to avoid the 'Skipping clustered
VG' errors when requesting information about a clustered VG
without using clustered locking and still exit with success.
The messages can still be seen with -v.
1) When converting from an x-way mirror/raid1 to a y-way mirror/raid1,
the default behaviour should be to stay the same segment type.
2) When converting from linear to mirror or raid1, the default behaviour
should honor the mirror_segtype_default.
3) When converting and the '--type' argument is specified, the '--type'
argument should be honored.
catch such conditions, but errors in the tests caused the issue to go
unnoticed. The code has been fixed to perform #2 properly, the tests
have been corrected to properly test for #2, and a few other tests
were changed to explicitly specify the '--type mirror' when necessary.
Add internal devtypes reporting command to display built-in recognised
block device types. (The output does not include any additional
types added by a configuration file.)
> lvm devtypes -o help
Device Types Fields
-------------------
devtype_all - All fields in this section.
devtype_name - Name of Device Type exactly as it appears in /proc/devices.
devtype_max_partitions - Maximum number of partitions. (How many device minor numbers get reserved for each device.)
devtype_description - Description of Device Type.
> lvm devtypes
DevType MaxParts Description
aoe 16 ATA over Ethernet
ataraid 16 ATA Raid
bcache 1 bcache block device cache
blkext 1 Extended device partitions
...
The traditional style used for optional editable definitions
/* #define X /* */
produces a bogus warning from gcc -Wall.
Rather than suppressing this with -Wno-comment, switch over to
the // comment style.
The same corner cases that exist for snapshots on mirrors exist for
any logical volume layered on top of mirror. (One example is when
a mirror image fails and a non-repair LVM command is the first to
detect it via label reading. In this case, the LVM command will hang
and prevent the necessary LVM repair command from running.) When
a better alternative exists, it makes no sense to allow a new target
to stack on mirrors as a new feature. Since, RAID is now capable of
running EX in a cluster and thin is not active-active aware, it makes
sense to pair these two rather than mirror+thinpool.
As further background, here are some additional comments that I made
when addressing a bug related to mirror+thinpool:
(https://bugzilla.redhat.com/show_bug.cgi?id=919604#c9)
I am going to disallow thin* on top of mirror logical volumes.
Users will have to use the "raid1" segment type if they want this.
This bug has come down to a choice between:
1) Disallowing thin-LVs from being used as PVs.
2) Disallowing thinpools on top of mirrors.
The problem is that the code in dev_manager.c:device_is_usable() is unable
to tell whether there is a mirror device lower in the stack from the device
being checked. Pretty much anything layered on top of a mirror will suffer
from this problem. (Snapshots are a good example of this; and option #1
above has been chosen to deal with them. This can also be seen in
dev_manager.c:device_is_usable().) When a mirror failure occurs, the
kernel blocks all I/O to it. If there is an LVM command that comes along
to do the repair (or a different operation that requires label reading), it
would normally avoid the mirror when it sees that it is blocked. However,
if there is a snapshot or a thin-LV that is on a mirror, the above code
will not detect the mirror underneath and will issue label reading I/O.
This causes the command to hang.
Choosing #1 would mean that thin-LVs could never be used as PVs - even if
they are stacked on something other than mirrors.
Choosing #2 means that thinpools can never be placed on mirrors. This is
probably better than we think, since it is preferred that people use the
"raid1" segment type in the first place. However, RAID* cannot currently
be used in a cluster volume group - even in EX-only mode. Thus, a complete
solution for option #2 must include the ability to activate RAID logical
volumes (and perform RAID operations) in a cluster volume group. I've
already begun working on this.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
Udev daemon has recently introduced a limit on the number of udev
processes (there was no limit before). This causes a problem
when calling pvscan --cache -aay in lvmetad udev rules which
is supposed to activate the volumes. This activation is itself
synced with udev and so it waits for the activation to complete
before the pvscan finishes. The event processing can't continue
until this pvscan call is finished.
But if we're at the limit with the udev process count, we can't
instatiate any more udev processes, all such events are queued
and so we can't process the lvm activation event for which the
pvscan is waiting.
Then we're in a deadlock since the udev process with the
pvscan --cache -aay call waits for the lvm activation udev
processing to complete, but that will never happen as there's
this limit hit with the number of udev processes.
The process with pvscan --cache -aay actually times out eventually
(3min or 30sec, depends on the version of udev).
This patch makes it possible to run the pvscan --cache -aay
in the background so the udev processing can continue and hence
we can avoid the deadlock mentioned above.
The commit 82d83a01ce
"autoactivation: refresh existing VG before autoactivation"
causes problems (dangling udev_sync cookies, slow processing
of the pvscan --cache --major --minor call from udev rules)
when the autoactivation handler is run in parallel on
several PVs that belong to the same VG. Revert this patch
until the exact source of the problem is found and then
properly fixed and handled.
The patch allows the user to also pvmove snapshots and origin logical
volumes. This means pvmove should be able to move all segment types.
I have, however, disallowed moving converting or merging logical volumes.