IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We use mpath filtering (enabled by devices/multipath_component_detection=1
lvm.conf setting) to avoid a situation in which we could end up with
duplicate PVs found. We need to filter out the mpath components and
use only the top-level multipath mapping instead for PV scans.
However, if the there are partitions on multipath components, we need
to filter out these partitions. This patch fixes it so those
partitions found on multipath components are filtered as well.
For example, let's consider following configuration:
The sda and sdb are mpath components, sda1 and sdb1 the partitions
on these components, mpath-test the mpath mapping and mpath-test1
the partition mapping - created automatically by kpartx right
after mpath-test creation. The PV resides on top.
(LVM PV)
|
mpath-test1
|
mpath-test
|
sda1 ---------- sdb1
\ | |/
sda sdb
E.g. for sda1 and sdb1, the code will detect this and it skips
the partition that belongs to the multipath component:
<snippet from the log>
#filters/filter-mpath.c:156 /dev/sda1: Device is a partition, using primary device /dev/sda for mpath component detection
130 #ioctl/libdm-iface.c:1724 dm status (253:2) OF[16384](*1)
131 #filters/filter-mpath.c:196 /dev/sda1: Skipping mpath component device
</snippet from the log>
Othewise, we'd see the same PV label on sda1/sdb1 and mpath-test1
at the same time ending up with "Duplicate PV found...".
The dev_get_primary_dev fn now returns:
0 if the dev is already a primary dev
1 if the dev is a partition, primary dev is returned in "result" (output arg)
-1 on error
This way, we can better differentiate between the error state
and the state in which the dev supplied is not a partition
in the caller (this was same return value before).
Also, if we already have information about the device type,
we can check its major number against the list of known device
types (cmd->dev_types) directly, so we don't need to go through
the sysfs - we only check the major:minor pair which is a bit
more straightforward and faster. If the dev_types does not have
any info about this device type, the code just fallbacks to
the original sysfs interface to get the partition info.
Changes:
- move device type registration out of "type filter" (filter.c)
to a separate and new dev-type.[ch] for common use throughout the code
- the structure for keeping the major numbers detected for available
device types and available partitioning available is stored in
"dev_types" structure now
- move common partitioning detection code to dev-type.[ch] as well
together with other device-related functions bound to dev_types
(see dev-type.h for the interface)
The dev-type interface contains all common functions used to detect
subsystems/device types, signature/superblock recognition code,
type-specific device properties and other common device properties
(bound to dev_types), including partitioning support.
- add dev_types instance to cmd context as cmd->dev_types for common use
- use cmd->dev_types throughout as a central point for providing
information about device types
Giving volume type information about being 'metadata' type of volume
has higher priority then i.e. 'mirror' or 'thin' flag - for those
type we have 'target attr' (7th. field).
The special suspend/resume code in lv_remove for LVM1 snapshots was interpsersed
with a vg_commit call. However, while with LVM1 metadata, vg_commit is
technically a no-op, the activation code relied on the ondisk and incore
metadata being the same, since on LVM1, a "commit" happens in vg_write
already. Since the "ondisk" metadata was previously not available with format1
(and incore was silently used instead, via lvmcache), the problem was masked.
This ties the two preceding changes together, actually using the "ondisk"
version of VG metadata instead of calling into lvmcache when activating
volumes. The cache hooks are still used as a fallback, because we don't have an
uncached scanning API yet.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
This allows us to get the current on-disk version of the metadata whenever we
have the current in-flight version, without a recourse to scanning or lvmcache.
Last commit made dump filter only partially composable.
Add remaining functionality and also support composable wipe,
which is needed, when i.e. vgscan needs to remove cache.
(in release fix)
Add a generic dump operation to filters and make the composite filter call
through to its components. Previously, when global filter was set, the code
would treat the toplevel composite filter's private area as if it belonged a
persistent filter, trying to write nonsense into a non-sensical file.
Also deal with NULL cmd->filter gracefully.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
There is no point in creation of 2chunks snapshot,
since the snapshot is invalidated immeditelly with the first write
as there is no free chunk for COW blocks
(2 chunks are used by the snap header and the 1st. metadata chunk).
Enhance error message about the lowest usable size.
Avoid hitting memory corruption (double free) in code path,
where PV FID has been already destroyed and the released pointer
was left in PV structure and could have been tried to be released
from there 2nd. time with final context destruction.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
If calling _snap_target_present on 2nd and later call and for
a segment with MERGING flag set, we must return the status of
snapshot as well as snapshot-merge target presence, not just
the snapshot one.
Try to fix commit bf2741376d47411994d4065863acab8e405ff5c7.
lv_is_active is not the same as lv_info(cmd, org, 0, &info, 0, 0).
Introduce and use lv_is_active_locally.
This fixes a long standing regression since LVM2 2.02.74 (commit 4efb1d9c,
"Update heuristic used for default and detected data alignment.")
The default PE alignment could be used (via MAX()) even if it was
determined that the device's MD stripe width, or minimal_io_size or
optimal_io_size were not factors of the default PE alignment (either 64K
or the newer default of 1MB, etc). This bug would manifest if the
default PE alignment was larger than the overriding hint that the
device provided (e.g. default of 1MB vs optimal_io_size of 768K).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If the dm_realloc would fail, the already allocate _maps_buffer
memory would have been lost (overwritten with NULL).
Fix this by using temporary line buffer.
Also add a minor cleanup to set end of buffer to '\0',
only when we really know the file size fits the preallocated buffer.
Setting the cmd->default_settings.udev_fallback also requires DM
driver version check. However, this caused useless mapper/control
access with ioctl if not needed actually. For example if we're not
using activation code, we don't need to know the udev_fallback as
there's no node and symlink processing.
For example, this premature mapper/control access caused problems
when using lvm2app even when no activation happens - there are
situations in which we don't need to use mapper/control, but still
need some of the lvm2app functionality. This is also the case for
lvm2-activation systemd generator which just needs to look at the
lvm2 configuration, but it shouldn't touch mapper/control.
For reporting stacked or joined devices properly in cluster,
we need to report their activation state according the lock,
which activated this device tree.
This is getting a bit complex - current code tries simple approach -
For snapshot - return status for origin.
For thin pool - return status of the first known active thin volume.
For the rest of them - try to use dependency list of LVs and skip
known execptions. This should be able to recursively deduce top level
device for given LV.
(in release fix)