IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
. For dm-cache in writethrough, always allow splitcache,
whether the cache is missing PVs or not.
. For dm-cache in writeback, if the cache is missing PVs,
allow splitcache with force and yes.
. For dm-writecache, if the cache is missing PVs,
allow splitcache with force and yes.
Enhance 'activation' experience for VDO pool to more closely match
what happens for thin-pools where we do use a 'fake' LV to keep pool
running even when no thinLVs are active. This gives user a choice
whether he want to keep thin-pool running (wihout possibly lenghty
activation/deactivation process)
As we do plan to support multple VDO LVs to be mapped into a single VDO,
we want to give user same experience and 'use-patter' as with thin-pools.
This patch gives option to activate VDO pool only without activating
VDO LV.
Also due to 'fake' layering LV we can protect usage of VDO pool from
command like 'mkfs' which do require exlusive access to the volume,
which is no longer possible.
Note: VDO pool contains 1024 initial sectors as 'empty' header - such
header is also exposed in layered LV (as read-only LV).
For blkid we are indentified as LV with UUID suffix - thus private DM
device of lvm2 - so we do not need to store any extra info in this
header space (aka zero is good enough).
When lvm2 is activating layered pool LV (to basically keep pool opened,
the other function used to be 'locking' be in sync with DM table)
use this LV in read-only mode - this prevents 'write' access into
data volume content of thin-pool.
Note: since EMPTY/unused thin-pool is created as 'public LV' for generic
use by any user who i.e. wish to maintain thin-pool and thins himself.
At this moment, thin-pool appears as writable LV. As soon as the 1st.
thinLV is created, layer volume will appear is 'read-only' LV from this moment.
When an online PV completed a VG, the standard
activation functions were used to activate the VG.
These functions use a full scan of all devs.
When many pvscans are run during startup and need
to activate many VGs, scanning all devs from all
the pvscans can take a long time.
Optimize VG activation in pvscan to scan only the
devs in the VG being activated. This makes use of
the online file info that was used to determine
the VG was complete.
The downside of this approach is that pvscan activation
will not detect duplicate PVs and block activation,
where a normal activation command (which scans all
devices) would.
Fixes a regression from commit ba7ff96faf
"improve reading and repairing vg metadata"
where the error path for a vg name with invalid
charaters was missing an error flag, which led
to the caller not recognizing an error occured.
Previously, an error flag was hidden in the old
_vg_make_handle function.
Only the first entry of the filter array was being
included in the copy of the filter, rather than the
entire thing. The result is that hints would not be
refreshed if the filter was changed but the first
entry was unchanged.
Fixes a segfault in the recent commit e01fddc57:
"improve duplicate pv handling for md components"
While choosing between duplicates, the info struct is
not always valid; it may have been dropped already.
Remove the code that was still using the info struct for
size comparisons. The size comparisons were a bogus check
anyway because it was just preferring the dev that had
already been chosen, it wasn't actually comparing the
dev size to the PV size. It would be good to use a
dev/PV size comparison in the duplicate handling code, but
the PV size is not available until after vg_read, not
from the scan.
Since we need to preserve allocated strings across 2 separate
activation calls of '_tree_action()' we need to use other mem
pool them dm->mem - but since cmd->mem is released between
individual lvm2 locking calls, we rather introduce a new separate
mem pool just for pending deletes with easy to see life-span.
(not using 'libmem' as it would basicaly keep allocations over
the whole lifetime of clvmd)
This patch is fixing previous commmit where the memory was
improperly used after pool release.
Update configure and make code compilable if prlimit() is not present.
Since the code is suspicious do not cope yet with it's replacement
with set/getrlimit().
New udev in rawhide seems to be 'dropping' udev rule operations for devices
that are no longer existing - while this is 'probably' a bug - it's
revealing moments in lvm2 that likely should not run in a single
transaction and we should wait for a cookie before submitting more work.
TODO: it seem more 'error' paths should always include synchronization
before starting deactivating 'just activated' devices.
We should probably figure out some 'automatic' solution for this instead
of placing sync_local_dev_name() all over the place...
Support internal removal of 'cache origin' volume - which we
do not normally expose to a user - however internal processing
loops may hit this condition (depending on order of list LVs).
So when this operation is internally requested - we automatically
try to remove it's 'holding' LV (cache LV) - which will also
remove the origin.
Drop the 'cluster-only' optimization so we do resume ALL device
before we try to wait on cookie before 'removal' operation.
It's more correct order of operation - alhtough possibly slightly
less efficient - but until we have correct list of operations
'in-progress' we can't do anything better.
With previous patch 30a98e4d67 we
started to put devices one pending_delete list instead
of directly scheduling their removal.
However we have operations like 'snapshot merge' where we are
resuming device tree in 2 subsequent activation calls - so
1st such call will still have suspened devices and no chance
to push 'remove' ioctl.
Since we curently cannot easily solve this by doing just single
activation call (which would be preferred solution) - we introduce
a preservation of pending_delete via command structure and
then restore it on next activation call.
This way we keep to remove devices later - although it might be
not the best moment - this may need futher tunning.
Also we don't keep the list of operation in 1 trasaction
(unless we do verify udev symlinks) - this could probably
also make it more correct in terms of which 'remove' can
be combined we already running 'resume'.
Resuming of 'error' table entry followed with it's dirrect removal
is now troublesame with latest udev as it may skip processing of
udev rules for already 'dropped' device nodes.
As we cannot 'synchronize' with udev while we know we have devices
in suspended state - rework 'cleanup' so it collects nodes
for removal into pending_delete list and process the list with
synchronization once we are without any suspended nodes.
When pvmove is finished, we do a tricky operation since we try to
resume multiple different device that were all joined into 1 big tree.
Currently we use the infromation from existing live DM table,
where we can get list of all holders of pvmove device.
We look for these nodes (by uuid) in new metadata, and we do now a full
regular device add into dm tree structure. All devices should be
already PRELOAD with correct table before entering suspend state,
however for correctly working readahead we need to put correct info
also into RESUME tree. Since table are preloaded, the same table
is skip and resume, but correct read ahead is now set.
Eliminate md components at the start so they don't
interfere with actual duplicates, and don't need
to be removed later. This also allows for choosing
no copy of a PVID if they all happen to be md
components.
Usually md components are eliminated in label scan and/or
duplicate resolution, but they could sometimes get into
the vg_read stage, where set_pv_devices compares the
device to the PV.
If set_pv_devices runs an md component check and finds
one, vg_read should eliminate the components.
In set_pv_devices, run an md component check always
if the PV is smaller than the device (this is not
very common.) If the PV is larger than the device,
(more common), do the component check when the config
setting is "auto" (the default).
When there are more devices than the current soft
open file limit (default 1024), raise the soft limit
to the hard/max limit (default 4096).
Do this prior to scanning in case enough of the
devices are PVs that need to be kept open.
Avoid having PVs with different logical block sizes in the same VG.
This prevents LVs from having mixed block sizes, which can produce
file system errors.
The new config setting devices/allow_mixed_block_sizes (default 0)
can be changed to 1 to return to the unrestricted mode.
Do this at two levels, although one would be enough to
fix the problem seen recently:
- Ignore any reported sector size other than 512 of 4096.
If either sector size (physical or logical) is reported
as 512, then use 512. If neither are reported as 512,
and one or the other is reported as 4096, then use 4096.
If neither is reported as either 512 or 4096, then use 512.
- When rounding up a limited write in bcache to be a multiple
of the sector size, check that the resulting write size is
not larger than the bcache block itself. (This shouldn't
happen if the sector size is 512 or 4096.)
Previously, consecutive copies of metadata would have garbage
data in the space between them. After metadata wrapping,
the garbage would be portions of old metadata. This made
analysis of the metadata area more difficult.
This would happen because the start of new copy of metadata
is advanced from the end of the last copy to start at the
next 512 byte boundary.
Zero the space between consecutive copies of metadata by
extending each metadata write to end at the next 512 byte
boundary. The size of the metadata itself is not extended,
only the write. The buffer being written contains the
metadata text followed by the necessary number of zeros.
An active md device with an end superblock causes lvm to
enable full md component detection. This was being done
within the filter loop instead of before, so the full
filtering of some devs could be missed.
Also incorporate the recently added config setting that
controls the md component detection.
This check was mistakenly removed when shifting code in commit
"separate code for setting devices from metadata parsing".
Put it back with some new conditions.
The exported VG checking/enforcement was scattered and
inconsistent. This centralizes it and makes it consistent,
following the existing approach for foreign and shared
VGs/PVs, which are very similar to exported VGs/PVs.
The access policy that now applies to foreign/shared/exported
VGs/PVs, is that if a foreign/shared/exported VG/PV is named
on the command line (i.e. explicitly requested by the user),
and the command is not permitted to operate on it because it
is foreign/shared/exported, then an access error is reported
and the command exits with an error. But, if the command is
processing all VGs/PVs, and happens to come across a
foreign/shared/exported VG/PV (that is not explicitly named on
the command line), then the command silently skips it and does
not produce an error.
A command using tags or --select handles inaccessible VGs/PVs
the same way as a command processing all VGs/PVs, and will
not report/return errors if these inaccessible VGs/PVs exist.
The new policy fixes the exit codes on a somewhat random set of
commands that previously exited with an error if they were
looking at all VGs/PVs and an exported VG existed on the system.
There should be no change to which commands are allowed/disallowed
on exported VGs/PVs.
Certain LV commands (lvs/lvdisplay/lvscan) would previously not
display LVs from an exported VG (for unknown reasons). This has
not changed. The lvm fullreport command would previously report
info about an exported VG but not about the LVs in it. This
has changed to include all info from the exported VG.
When vg_read rescans devices with the intention of
writing the VG, the label rescan can open the devs
RW so they do not need to be closed and reopened
RW in dev_write_bytes.
Previously the VG metadata description field (which contains
the command line) was only included in backup/archive copies
of the metadata. Now also include it in the metadata written
to the metadata areas.
The way that this command now uses the global lock
followed by a label scan, it can simply check if the
new VG name exists, and if not lock it and create it.