IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Allow the optional '--type raid1' to be included in the lvconvert
command when adding or removing raid images with integrity.
It does not change the meaning of the command (specifying a type
that matches the current type is redundant but generally allowed.)
To create a new cache or writecache LV with a single command:
lvcreate --type cache|writecache
-n Name -L Size --cachedevice PVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, a new cachevol LV is created internally, using PVfast
specified by the cachedevice option.
- Then, the cachevol is attached to the main LV, converting the
main LV to type cache|writecache.
Include --cachesize Size to specify the size of cache|writecache
to create from the specified --cachedevice PVs, otherwise the
entire cachedevice PV is used. The --cachedevice option can be
repeated to create the cache from multiple devices, or the
cachedevice option can contain a tag name specifying a set of PVs
to allocate the cache from.
To create a new cache or writecache LV with a single command
using an existing cachevol LV:
lvcreate --type cache|writecache
-n Name -L Size --cachevol LVfast VG [PVslow ...]
- A new main linear|striped LV is created as usual, using the
specified -n Name and -L Size, and using the optionally
specified PVslow devices.
- Then, the cachevol LVfast is attached to the main LV, converting
the main LV to type cache|writecache.
In cases where more advanced types (for the main LV or cachevol LV)
are needed, they should be created independently and then combined
with lvconvert.
Example
-------
user creates a new VG with one slow device and one fast device:
$ vgcreate vg /dev/slow1 /dev/fast1
user creates a new 8G main LV on /dev/slow1 that uses all of
/dev/fast1 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1
-n main -L 8G vg /dev/slow1
Example
-------
user creates a new VG with two slow devs and two fast devs:
$ vgcreate vg /dev/slow1 /dev/slow2 /dev/fast1 /dev/fast2
user creates a new 8G main LV on /dev/slow1 and /dev/slow2
that uses all of /dev/fast1 and /dev/fast2 as a writecache:
$ lvcreate --type writecache --cachedevice /dev/fast1 --cachedevice /dev/fast2
-n main -L 8G vg /dev/slow1 /dev/slow2
Example
-------
A user has several slow devices and several fast devices in their VG,
the slow devs have tag @slow, the fast devs have tag @fast.
user creates a new 8G main LV on the slow devs with a
2G writecache on the fast devs:
$ lvcreate --type writecache -n main -L 8G
--cachedevice @fast --cachesize 2G vg @slow
To add a cache or writecache to a main LV with a single command:
lvconvert --type cache|writecache --cachedevice /dev/ssd vg/main
A cachevol LV will be allocated from the specified cache device,
then attached to the main LV. Include --cachesize to specify the
size of cachevol to create, otherwise the entire cachedevice is
used. The cachedevice option can be repeated to create a cachevol
from multiple devices.
Example
-------
A user has an existing main LV that they want to speed up
using a new ssd.
user adds the new ssd to the VG:
$ vgextend vg /dev/ssd
user attaches the new ssd their main LV:
$ lvconvert --type writecache --cachedevice /dev/ssd vg/main
Example
-------
A user has two existing main LVs that they want to speed up
with a new ssd.
user adds the new 16G ssd to the VG:
$ vgextend vg /dev/ssd
user attaches some of the new ssd to the first main LV,
using half of the space:
$ lvconvert --type writecache --cachedevice /dev/ssd
--cachesize 8G vg/main1
user attaches some of the new ssd to the second main LV,
using the other half of the space:
$ lvconvert --type writecache --cachedevice /dev/ssd
--cachesize 8G vg/main2
Example
-------
A user has an existing main LV that they want to speed up using
two new ssds.
user adds the new two ssds the VG:
$ vgextend vg /dev/ssd1
$ vgextend vg /dev/ssd2
user attaches both ssds their main LV:
$ lvconvert --type writecache
--cachedevice /dev/ssd1 --cachedevice /dev/ssd2 vg/main
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m
To write a new/repaired pv_header and label_header:
pvck --repairtype pv_header --file <file> <device>
This uses the metadata input file to find the PV UUID,
device size, and data offset.
To write new/repaired metadata text and mda_header:
pvck --repairtype metadata --file <file> <device>
This requires a good pv_header which points to one or two
metadata areas. Any metadata areas referenced by the
pv_header are updated with the specified metadata and
a new mda_header. "--settings mda_num=1|2" can be used
to select one mda to repair.
To combine all header and metadata repairs:
pvck --repair --file <file> <device>
It's best to use a raw metadata file as input, that was
extracted from another PV in the same VG (or from another
metadata area on the same PV.) pvck will also accept a
metadata backup file, but that will produce metadata that
is not identical to other metadata copies on other PVs
and other areas. So, when using a backup file, consider
using it to update metadata on all PVs/areas.
To get a raw metadata file to use for the repair, see
pvck --dump metadata|metadata_search.
List all instances of metadata from the metadata area:
pvck --dump metadata_search <device>
Save one instance of metadata at the given offset to
the specified file (this file can be used for repair):
pvck --dump metadata_search --file <file>
--settings "metadata_offset=<off>" <device>
using --settings:
mda_offset=<offset> mda_size=<size> can be used
in place of the offset/size that normally come
from headers.
metadata_offset=<offset> prints/saves one instance
of metadata text at the given offset, in
metadata_all or metadata_search.
When pvscan is used to activate a VG via an
asynchronous service (i.e. lvm2-pvscan), there
is no requirement that the command wait for
udev to create device nodes before returning.
It's possible that waiting for udev is slow
enough to cause the service running the command
to time out. So, allow the --noudevsync option
to be given to pvscan to skip waiting for udev.
(This commit is not changing the lvm2-pvscan
service itself to use --noudevsync.)
Still unknown is whether there are any complex
LV activation cases in which lvm itself requires
access to a device node, in which case the udev
wait could be needed by lvm itself.
(When running an activation command directly
from the command line, it's generally expected
that the activated LVs are ready to use when
the command is finished, so lvm waits for
udev to finish creating the dev nodes.)
This allows the creation of a striped mirror leg(s) during upconvert
by adding lvconvert command line options --stripes/--stripesize
for 'mirror' to tools/command-lines.in.
In case multiple mirror legs are being added, all will have the
same requested striped layout.
Resolves: rhbz1720705
The -a was being included in the set of "one or more"
options instead of an actual required option. Even
though the cmd def was not implementing the restrictions
correctly, the command internally was.
Adjust the cmd def code which did not support a command
with some real required options and a set of "one or more"
options.
uses vg_write to correct more common or less severe issues,
and also adds the ability to repair some metadata corruption
that couldn't be handled previously.
Add 'pvck --dump headers' to print all the
lvm ondisk structs. Also checks the values
and prints any problems.
The previous dump metadata is also converted to
use these same routines, which do not depend on lvm
fully scanning/reading/processing the headers and
metadata on disk. This makes it useful to get data in
cases where there is corruption that would otherwise
prevent the normal functions from working.
The new command 'pvck --dump metadata PV' will extract
the current version of VG metadata from a PV for testing
and debugging. --dump metadata_area extracts the entire
text metadata area.
Allow using caching with VDO.
User can either cache a single vdopool or
a vdo LV - difference when the caching is put-in depends on a use-case
and it's upto user to decide which kind of speed is expected.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.
Just like we support for thin-pool syntax:
lvcreate --thinpool new_tpoolname -L Size vg
add same support logic with for vdo-poo:
lvcreate --vdopool new_vpoolname -L Size vg
Also move description of syntax bellow thin-pool, so it's
correctly ordered in generated man page.
instead of a separate --writecacheblocksize option.
writecache block_size is not technically a setting,
but it can borrow the option as a special case.
This fixes a problem in commit e6bb780d24, in which the
back compat handling for the old locking_type=4 was
incorrectly translated to mean the same thing as --readonly,
which prevented activation because activation uses an
exclusive vg lock. Previously, locking_type=4 allowed
activation.
If we see locking_type 4 in an old config, translate it to
the new combination of --readonly and --sysinit, which we
now define to mean the --readonly behavior with an exception
to allow activation.
The 'lvconvert LV' command def has caused multiple problems
for command matching because it matches the required options
of any lvconvert command. Any lvconvert with incorrect options
ends up matching 'lvconvert LV', which then produces an error
about incorrect options being used for 'lvconvert LV'. This
prevents suggestions from nearest-command partial command matches.
Add a special case for 'lvconvert LV' so that it won't be used
as a partial match for a command that has options specified.
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
It's no longer needed. Clustered VGs are now handled in
the same way as foreign VGs, and as shared VGs that
can't be accessed:
- A command processing all VGs sees a clustered VG,
prints a message ("Skipping clustered VG foo."),
skips it, and does not fail.
- A command where the clustered VG is explicitly
named on the command line, prints a message and fails.
"Cannot access clustered VG foo, see lvmlockd(8)."
The option is listed in the set of ignored options for
the commands that previously accepted it. (Removing it
entirely would cause commands/scripts to fail if they
set it.)
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
Fixing regresion on argument acceptance where any lv can be passed
with paramaterless lvconvert which is meant to figure out needed
operation - i.e. wait for mirror synchronization.
User has no other 'effective' method to wait for mirror getting in-sync.
When certain cmd def RULE's fail, the error messages can
sometimes be confusing. This expands the error messages
to help clarify why the rule failed, especially in cases
where options are used incorrectly.
Enable handling of --poolmetadataspare so if user can prevent
creation of _pmspare volume during --repair operation (just
like during actual lvcreate or lvconvert) for pool volumes.
Add an independent command definition for "vgchange --locktype",
and split the implementation out of the set of common metadata
changes. It is unlike normal metadata changes, and can only
be run by itself. (Changing the lock type is similar in
principle to changing the VG name or the VG system ID; it
effects the ability of any host to see or access the VG.)
At some point this command lost the ability to forcibly change
the lock type of a shared VG to "none" (making it a local VG).
This can be necessary to repair shared VGs (e.g. recovery steps
that occur in vg_read are disabled for shared VGs because
they are not locked properly, or recovering sanlock locks
when the PV holding them is lost.)
"vgchange --locktype none --lockopt force VG" is used as the
method of forcing the shared VG to become local so that it
can be repaired.
Fill in some gaps where old versions of lvm allowed
--poll and --monitor in combination with other operations,
but those combinations had been lost since the cmd def work.
(The new cmd def code also added some combinations that
had been missed by the old code.)
Changes:
lvchange --activate: add poll and monitor options, and
add calls to them in implementation.
lvchange --refresh: add monitor option (poll already there),
and call to monitor in implementation.
lvchange <metadata ops>: add poll and monitor options, and
add calls to them in implementation.
vgchange <metadata ops>: add poll option (call to poll
already in implementation).
vgchange --refresh: remove monitor option (not used by code)
lvchange --persistent y: add poll and monitor options, and
add calls to them, and to activate
in the implementation. (Making it
match the main lvchange metadata
command.)
Summary of current usage:
lvchange --activate: monitor, poll
vgchange --activate: monitor, poll
lvchange --refresh: monitor, poll
vgchange --refresh: poll
lvchange --monitor: ok
lvchange --poll: ok
lvchange --monitor --poll: ok
vgchange --monitor: ok
vgchange --poll: ok
vgchange --monitor --poll: ok
lvchange <metadata ops>: monitor, poll
vgchange <metadata ops>: poll
These days --partial is only used with activation in
lvchange/vgchange. It probably had another meaning
at some point in history which is no longer used,
so ignore it in those cases.
When included in the OO list, the option is advertised in
help/man output, implying it is meaningful to the command,
when in fact the command never uses it.
The IO list means the option won't cause an error if it's
used, but is not displayed as an valid option for the command.
If the option is not included in either OO or IO lists,
using the option would cause a command error, which would cause
problems for anyone is using the option for historical reasons.
Fix a regression introduced by new command line processing
(see starting commit 1e2420bca8)
causing activation to be rejected in combination with setting
persistent minor device numbers.
Resolves: rhbz1437611
Fixes command defs related to creating a new thin pool and
then a new thin lv in the new pool.
1. lvcreate --size --virtualsize --thinpool
Needs a cmd def, it was missing.
The def is unique by the three required
options: size, virtualsize and thinpool.
2. lvcreate --size --virtualsize --thinpool VG
Needs a cmd def, it was missing.
The def is unique by the three required
options: size, virtualsize and thinpool,
and one required positional arg: VG.
3. lvcreate --thin --virtualsize --size LV_new|VG
This existing def should not accept an optional
--type thin, which if used makes it indistinct
from another def.
4. lvcreate --size --virtualsize VG
This existing def should not accept an optional
--type thin or --thin, which if used makes it
indistinct from other defs (e.g. 3)
This reverts commit 642d682d8d.
Using the thinpool option with this cmd def makes it
indistinct from other cmd defs where thinpool is a
required option.
lvcreate --thinpool POOL1 -L 100M --virtualsize 100M snapper_thinp
https://bugzilla.redhat.com/1434027
(The general rule is that a command is accepted if it is unambiguous.
The combination -L -V --thinpool uniquely identifies the operation.)
Systematically outline every combination of:
--type striped, --type mirror, --type raid, --mirrors, --stripes
and make sure each is assigned to one specific cmd def.
This revealed that a new command def is needed for
lvcreate that uses both --mirrors and --stripes
but no --type option.
The use of LVCREATE_RAID shortcut for an option set
resulted in mirrors/stripes being included in optional
opts set when they were already in the required list.
As was recently done with relative signes for sizes/extents,
limit the signs used with the mirrors option, e.g.
lvcreate --mirrors now does not accept or advertise an
optional minus sign with the value. lvconvert --mirrors
accepts +|-.
The LVCONVERT_RAID shortcut for including options ended
up including mirrors/stripes as optional opts in defs where
they were already required, or in defs where they would
not be used. Remove the option set and specify in each
case only the options wanted.
OO_LVCREATE_CACHE accepts --cachemetadataformat.
Support new option --cachemetadataformat auto|1|2 for caching.
Word 'auto' can be also be given as '0'.
Add new values for different sign variations, resulting in:
size_VAL no sign accepted
ssize_VAL accepts + or -
psize_VAL accepts +
nsize_VAL accpets -
extents_VAL no sign accepted
sextents_VAL accepts + or -
pextents_VAL accepts +
nextents_VAL accepts -
Depending on the command being run, change the option
values for --size, --extents, --poolmetadatasize to
use the appropriate value from above.
lvcreate uses no sign (but accepts + and ignores it).
lvresize accepts +|- for a relative change.
lvextend accepts + for a relative change.
lvreduce accepts - for a relative change.
In lvcreate/lvconvert, --poolmetdatasize can only be an
absolute value, but in lvresize/lvextend, --poolmetadatasize
can be given a + relative value.
The val types only currently support relative values that
go in both directions +|-. Further work is needed to add
val types that can be relative in only one direction, and
switching various option values to one those depending on
the command name. Then poolmetdatasize will not appear
with a +|- option in lvcreate/lvconvert, and will
appear with only the + option in lvresize/lvextend.
There was confusion in the code about whether or not the
--size option accepted a sign. Make it consistent and clear
that it does.
This exposes a new problem in that an option can only
accept one value type, e.g. --size can only accept a
signed number, it cannot accept a positive or negative
number for some commands and reject negative numbers for
others.
In practice, lvcreate accepts only positive --size
values and lvresize accepts positive or negative --size
values. There is currently no way to encode this
difference. Until that is fixed, the man page output
is hacked to avoid printing the [+|-] prefix for sizes
in lvcreate.
Add/remove the SECONDARY_SYNTAX flag to cmd defs.
cmd defs with this flag will be listed under the
ADVANCED USAGE man page section, so that the main
USAGE section contains the most common commands
without distraction.
- When multiple cmd defs do the same thing, one variant
can be displayed in the first list.
- Very advanced, unusual or uncommon commands should be
in the second list.
- Combine the equivalent lvconvert --type raid defs.
(Two cmd defs must be different without relying
on LV type, which are not known at the time the
cmd def is matched.)
- Remove unused optional options from lvconvert --stripes,
and lvconvert --stripesize.
- Use Number for --stripes_long val type.
- Combine the cmd def for raid reshape cleanup into the
existing start_poll cmd def (they were duplicate defs).
Calls into the raid code from a poll opertion will be
added.
In order to support striped raid5/6/10 LV reshaping (change
of LV type, stripesize or number of legs), this patch
introduces the changes to call the reshaping infratructure
from lv_raid_convert().
Changes:
- add reshaping calls from lv_raid_convert()
- add command definitons for reshaping to tools/command-lines.in
- fix raid_rimage_extents()
- add 2 new test scripts lvconvert-raid-reshape-linear_to_striped.sh
and lvconvert-raid-reshape-striped_to_linear.sh to test
the linear <-> striped multi-step conversions
- add lvconvert-raid-reshape.sh reshaping tests
- enhance lvconvert-raid-takeover.sh with new raid10 tests
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
There are two kinds of common options:
1. options common to all variants of a given command name
2. options common to all lvm commands
Previously, both kinds of common options were listed together
under "Common options". Now the first are printed under
"Common options for command" (when needed), and the second
are printed under "Common options for lvm" (always).
The --type option has previously been accepted for
lvresize/lvextend. Using it did not affect the operation
of the command. The value was simply verified as matching
the current seg type of the LV.
For this syntax:
lvconvert --thinpool LV1 --poolmetadata LV2
lvconvert --cachepool LV1 --poolmetadata LV2
Restore the metadata swapping behavior in addition to
the pool creation behavior. When LV1 is already a pool,
the metadata LV will be swapped with LV2.
When LV1 is not a pool, it will be converted to a
pool using the specified LV for metadata.
This syntax is no longer advertised because of the
ambiguous behavior. The primary syntaxes for pool
creation and metadata swapping will be the advertised
methods.
This reverts commit 717363bb94.
These alternate forms for swapping metadata cannot be
distinguished from the command for creating a pool.
If we were to add these alternate forms for swapping
metadata, we would need to overload the pool creation
command defs, making those definitions ambiguous.
All lvconvert functionality has been moved out of the
previous monolithic lvconvert code, except conversions
related to raid/mirror/striped/linear. This switches
that remaining code to be based on command defs, and
standard process_each_lv arg processing. This final
switch results in quite a bit of dead code that is
also removed.
This is a new explicit version of 'lvconvert LV'
which has been an obscure way of triggering polling
to be restarted on an LV that was previously converted.
Lift all the snapshot utilities (merge, split, combine)
out of the monolithic lvconvert implementation, using
the command definitions. The old code associated with
these commands is now unused and will be removed separately.