IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This reverts commit c37aa7881d840c429b858ee0068f0151e46ce0d9.
Put back the setting again, but the next commit will just
turn off the new behavior by default.
Avoid having PVs with different logical block sizes in the same VG.
This prevents LVs from having mixed block sizes, which can produce
file system errors.
The new config setting devices/allow_mixed_block_sizes (default 0)
can be changed to 1 to return to the unrestricted mode.
(cherry picked from commit 0404539edb25e4a9d3456bb3e6b402aa2767af6b)
Conflicts:
tools/lvmcmdline.c
tools/toollib.c
These commands were looking for the requested device alias
before dev_cache_scan had created the list of devs on the
system, so they would fail and report the dev wasn't found.
When using lvmetad, 'pvs' still evaluates full filters
on all devices (lvmetad only provides info about PVs,
but pvs needs to report info about all devices, at
least sometimes.)
Because some filters read the devices, pvs still reads
every device, even with lvmetad (i.e. lvmetad is no help
for the pvs command.) Because the device reads are not
being managed by the standard label scan layer, but only
happen incidentally through the filters, there is nothing
to control and limit the bcache content and the open file
descriptors for the devices. When there are a lot of devs
on the system, the number of open fd's excedes the limit
and all opens begin failing.
The proper solution for this would be for pvs to really
use lvmetad and not scan devs, or for pvs to do a proper
label scan even when lvmetad is enabled. To avoid any
major changes to the way this has worked, just work around
this problem by dropping bcache and closing the fd after
pvs evaluates the filter on each device.
When vgcreate does an automatic pvcreate, it opens the
dev with O_EXCL to ensure no other subsystem is using
the device. This exclusive fd remained in bcache and
prevented activation parts of lvm from using the dev.
This appeared with vgcreate of a sanlock VG because of
the unique combination where the dev is not yet a PV,
so pvcreate is needed, and the vgcreate also creates
and activates an internal LV for sanlock.
Fix this by closing the exclusive fd after it's used
by pvcreate so that it won't interfere with other
bits of lvm that may try to use the device.
Commit a30e6222799:
"scan: work around udev problems by avoiding open RDWR"
had us reopen a device RDWR in the write function. Since
we know earlier that the command intends to write to devices
in the VG, we can reopen the VG's devices RDWR during the
rescan instead of waiting until the writes to happen.
When the lvmlockd lock is shared, upgrade it to ex
when repair (writing) is needed during vg_read.
Pass the lockd state through additional read-related
functions so the instances of repair scattered through
vg_read can be handled.
(Temporary solution until the ad hoc repairs can be
pulled out of vg_read into a top level, centralized
repair function.)
The clvmd saved_vg data is independent from the normal lvm
lvmcache vginfo data, so separate saved_vg from vginfo.
Normal lvm doesn't need to use save_vg at all, and in clvmd,
lvmcache changes on vginfo can be made without worrying
about unwanted effects on saved_vg.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Recent changes allow some major simplification of the way
lvmcache works and is used. lvmcache_label_scan is now
called in a controlled fashion at the start of commands,
and not via various unpredictable side effects. Remove
various calls to it from other places. lvmcache_label_scan
should not be called from anywhere during a command, because
it produces an incorrect representation of PVs with no MDAs,
and misclassifies them as orphans. This has been a long
standing problem. The invalid flag and rescanning based on
that is no longer used and removed. The 'force' variation is
no longer needed and removed.
When a PV is stacked on an LV, the LV will be kept in
bcache, and the open fd on the LV may interfere with
processing the LV. So, drop/close a bcache fd for
an LV before processing the LV.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
In the same way as the other process_each functions.
In the common case all the info that's needed can be
used from lvmcache after a label scan. But this means
that unchosen devs for duplicate PVs need to be handled
explicitly.
Move the location of scans to make it clearer and avoid
unnecessary repeated scanning. There should be one scan
at the start of a command which is then used through the
rest of command processing.
Previously, the initial label scan was called as a side effect
from various utility functions. This would lead to it being called
unnecessarily. It is an expensive operation, and should only be
called when necessary. Also, this is a primary step in the
function of the command, and as such it should be called prominently
at the top level of command processing, not as a hidden side effect
of a utility function. lvm knows exactly where and when the
label scan needs to be done. Because of this, move the label scan
calls from the internal functions to the top level of processing.
Other specific instances of lvmcache_label_scan() are still called
unnecessarily or unclearly by specific commands that do not use
the common process_each functions. These will be improved in
future commits.
During the processing phase, rescanning labels for devices in a VG
needs to be done after the VG lock is acquired in case things have
changed since the initial label scan. This was being done by way
of rescanning devices that had the INVALID flag set in lvmcache.
This usually approximated the right set of devices, but it was not
exact, and obfuscated the real requirement. Correct this by using
a new function that rescans the devices in the VG:
lvmcache_label_rescan_vg().
Apart from being inexact, the rescanning was extremely well hidden.
_vg_read() would call ->create_instance(), _text_create_text_instance(),
_create_vg_text_instance() which would call lvmcache_label_scan()
which would call _scan_invalid() which repeats the label scan on
devices flagged INVALID. lvmcache_label_rescan_vg() is now called
prominently by _vg_read() directly.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
Rewrite validation of stripes and stripe_size args into more readable
sequential code.
Extend reading of stripes & stripes_size args so it better knows
defaults for types like striped raid.
TODO: this should really be a value obtained for segtype structure and
all the weird conditions and modification of stripes and stripe_size
around lvm2 code should be dropped.
- Use 'lvmcache' consistently instead of 'metadata cache'
- Always use 5 characters for source line number
- Remember to convert uuids into printable form
- Use <no name> rather than (null) when VG has no name.
Correction to function for extracting vgname out of lvconvert
parameters.
Avoid repeating some checks.
Add code to handle generic options which may provide vgname in its argument
and compare them all so they match to a single vgname (otherwise it's a
error).
Extract default (envvar) vgname only when no position nor optional vgname is
found.
Fixing regression instroduce with patchset started with commit:
1e2420bca85da9a37570871cd70192e9ae831786 (2.02.169)
Replaced the confusing device error message "not found (or ignored by
filtering)" by either "not found" or "excluded by a filter".
(Later we should be able to say which filter.)
Left the the liblvm code paths alone.
When certain cmd def RULE's fail, the error messages can
sometimes be confusing. This expands the error messages
to help clarify why the rule failed, especially in cases
where options are used incorrectly.
Previously the cache remembered an existing bootloaderarea and
reinstated it (without even checking for overlap) when asked to
write out the PV. pvcreate could write out an incorrect layout.