IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When testing conversion sanity, we checked lv->status & MIRRORED
which encompasses both old mirrors and raid1 mirrors. But we need to
ban only the old mirrors here hence allow raid1 mirrors.
Avoid playing with +1.
PATH_MAX code needs probably more thinking anyway, since
there is no MAX path in Linux - user may easily create path
with 64kB chars - so 4kB buffer is surelly not enough for
such dirs.
Note:
http://insanecoding.blogspot.cz/2007/11/pathmax-simply-isnt.html
The lv_type_name function is remnant from old code that reported
only single string for the LV type. LV types are now reported
in a more extended way as keyword list that describe the type
precisely (using lv_layout_and_type fn).
The lv_type_name was used in some error messages to display the
type of the LV so just reinstate the old messages back referencing
the type directly with a string - this is enough for error messages.
They don't need to display the LV type as precisely as it's used
on lvs output (which is optimized for selection anyway).
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg -wI-a----- linear linear
[pvmove0] vg p-C-aom--- mirror mirror,pvmove
(added "mirror" for pvmove LV)
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg ori------- linear external,multiple,origin,thin
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
lvol2 vg Vwi-a-tz-- thin snapshot,thin
lvol3 vg Vwi-a-tz-- thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg Twi-ao---- linear data,pool,thin
[pool_tmeta] vg ewi-ao---- linear metadata,pool,thin
(added "multiple" for external origin used for more than one
thin snapshot - lvol0 in the example above)
Thin snapshots having external origins missed the "snapshot" keyword for
lv_type field. Also, thin external origins which are thin devices (from
another pool) were not recognized properly.
For example, external origin itself can be either non-thin volume (lvol0
below) or it can be a thin volume from another pool (lvol3 below):
Before this patch:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin thin
lvol3 vg ori---tz-- pool unknown external,origin,thin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
- lvol2 as well as lvol4 have missing "snapshot" in type field
- lvol3 has unrecognized layout (should be "thin"), but has double
"thin" in lv_type which is incorrect
- (also there's double "for" in the internal error message)
With this patch applied:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin snapshot,thin
lvol3 vg ori---tz-- pool thin external,origin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
The maximum stripe size is equal to the volume group PE size. If that
size falls below the STRIPE_SIZE_MIN, the creation of RAID 4/5/6 volumes
becomes impossible. (The kernel will fail to load a RAID 4/5/6 mapping
table with a stripe size less than STRIPE_SIZE_MIN.) So, we report an
error if it is attempted.
This is very rare because reducing the PE size down that far limits the
size of the PV below that of modern devices.
This patch adds a new flag --deferred to dmsetup remove. If this flag is
specified and the device is open, it is scheduled to be deleted on
close.
struct dm_info is extended.
The existing dm_task_get_info() is converted into a wrapper around the
new version dm_task_get_info_with_deferred_remove() so existing binaries
can still use the old smaller structure.
Recompiled code will pick up the new larger structure.
From: Mikulas Patocka <mpatocka@redhat.com>
metadata/lv_manip.c:269: warning: declaration of "snapshot_count" shadows a global declaration
There's existing function called "snapshot_count" so rename the
variable to "snap_count".
When ignoring 'listed' volume, print info message.
(So the final command error message is a bit less confusing,
i.e. when user tries to deactive virtual origin:
> lvchange -an vg/lvol2_vorigin
Ignoring virtual origin logical volume vg/lvol2_vorigin.
One or more specified logical volume(s) not found.
The lv_layout and lv_type fields together help with LV identification.
We can do basic identification using the lv_attr field which provides
very condensed view. In contrast to that, the new lv_layout and lv_type
fields provide more detialed information on exact layout and type used
for LVs.
For top-level LVs which are pure types not combined with any
other LV types, the lv_layout value is equal to lv_type value.
For non-top-level LVs which may be combined with other types,
the lv_layout describes the underlying layout used, while the
lv_type describes the use/type/usage of the LV.
These two new fields are both string lists so selection (-S/--select)
criteria can be defined using the list operators easily:
[] for strict matching
{} for subset matching.
For example, let's consider this:
$ lvs -a -o name,vg_name,lv_attr,layout,type
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tdata_rimage_0] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_1] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_2] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_3] vg iwi-aor--- linear image,raid
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rimage_0] vg iwi-aor--- linear image,raid
[pool_tmeta_rimage_1] vg iwi-aor--- linear image,raid
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
thin_vol1 vg Vwi-a-tz-- thin thin
thin_vol2 vg Vwi-a-tz-- thin multiple,origin,thin
Which is a situation with thin pool, thin volumes and thin snapshots.
We can see internal 'pool_tdata' volume that makes up thin pool has
actually a level10 raid layout and the internal 'pool_tmeta' has
level1 raid layout. Also, we can see that 'thin_snap1' and 'thin_snap2'
are both thin snapshots while 'thin_vol1' is thin origin (having
multiple snapshots).
Such reporting scheme provides much better base for selection criteria
in addition to providing more detailed information, for example:
$ lvs -a -o name,vg_name,lv_attr,layout,type -S 'type=metadata'
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
(selected all LVs which are related to metadata of any type)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={metadata,thin}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs which hold metadata related to thin)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={thin,snapshot}'
LV VG Attr Layout Type
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
(selected all LVs which are thin snapshots)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout=raid'
LV VG Attr Layout Type
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid layout, any raid layout)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout={raid,level1}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid level1 layout exactly)
And so on...
_pvcreate_check() has two missing requirements:
After refreshing filters there must be a rescan.
(Otherwise the persistent filter may remain empty.)
After wiping a signature, the filters must be refreshed.
(A device that was previously excluded by the filter due to
its signature might now need to be included.)
If several devices are added at once, the repeated scanning isn't
strictly needed, but we can address that later as part of the command
processing restructuring (by grouping the devices).
Replace the new pvcreate code added by commit
54685c20fc "filters: fix regression caused
by commit e80884cd080cad7e10be4588e3493b9000649426"
with this change to _pvcreate_check().
The filter refresh problem dates back to commit
acb4b5e4de "Fix pvcreate device check."
Using "[ ]" operator together with "&&" (or ",") inside causes the
string list to be matched if and only if all the items given match
the value reported and the number of items also match. This is
strict list matching and the original behaviour we already have.
In contrast to that, the new "{ }" operator together with "&&" inside
causes the string list to be matched if and only if all the items given
match the value reported but the number of items don't need to match.
So we can provide a subset in selection criteria and if the subset
is found, it matches.
For example:
$ lvs -o name,tags
LV LV Tags
lvol0 a
lvol1 a,b
lvol2 b,c,x
lvol3 a,b,y
$ lvs -o name,tags -S 'tags=[a,b]'
LV LV Tags
lvol1 a,b
$ lvs -o name,tags -S 'tags={a,b}'
LV LV Tags
lvol1 a,b
lvol3 a,b,y
So in the example above the a,b is subset of a,b,y and therefore
it also matches.
Clearly, when using "||" (or "#") inside, the { } and [ ] is the
same:
$ lvs -o name,tags -S 'tags=[a#b]'
LV LV Tags
lvol0 a
lvol1 a,b
lvol2 b,c,x
lvol3 a,b,y
$ lvs -o name,tags -S 'tags={a#b}'
LV LV Tags
lvol0 a
lvol1 a,b
lvol2 b,c,x
lvol3 a,b,y
Also in addition to the above feature, fix list with single value
matching when using [ ]:
Before this patch:
$ lvs -o name,tags -S 'tags=[a]'
LV LV Tags
lvol0 a
lvol1 a,b
lvol3 a,b,y
With this patch applied:
$ lvs -o name,tags -S 'tags=[a]'
LV LV Tags
lvol0 a
In case neither [] or {} is used, assume {} (the behaviour is not
changed here):
$ lvs -o name,tags -S 'tags=a'
LV LV Tags
lvol0 a
lvol1 a,b
lvol3 a,b,y
So in new terms 'tags=a' is equal to 'tags={a}'.
If using persistent filter and we're refreshing filters (just like we
do for pvcreate now after commit 54685c20fc),
we can't rely on getting the primary device of the partition from the cache
as such device could be already filtered by persistent filter and we get
a device cache lookup failure for such device.
For example:
$ lvm dumpconfig --type diff
devices {
obtain_device_list_from_udev=0
}
$lsblk /dev/sda
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 128M 0 disk
`-sda1 8:1 0 127M 0 part
$cat /etc/lvm/cache/.cache | grep sda
"/dev/sda1",
$pvcreate /dev/sda1
dev_is_mpath: failed to get device for 8:1
Physical volume "/dev/sda1" successfully created
The problematic part of the code called dev_cache_get_by_devt
to get the device for the device number supplied. Then the code
used dev_name(dev) to get the name which is then used in check
whether there's any mpath on top of this dev...
This patch uses sysfs to get the base name for the partition
instead, hence avoiding the device cache which is a correct
approach here.
The message "Cannot deactivate remotely exclusive device locally." makes
sense only for clustered LV. If the LV is non-clustered, then it's
always exclusive by definition and if it's already deactivated, this
message pops up inappropriately as those two conditions are met.
So issue the message only if the conditions are met AND we have clustered VG.
With cmirrord, we can do pvmove of clustered mirror. The code checking
suitability of LVs on the PV being moved issued a message if a mirror
LV was found and the VG was clustered. However, the actual pvmove did
work correctly.
The top-level mirror LV is actually skipped in the code since it's
always layered on top of internal LVs making up the mirror LV and for pvmove
we consider these internal devices only as they're actually layered on
top of concrete PVs then. But we don't need to issue any message here
about skipping the top-level mirror LV - it's misleading here.