IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Dmeventd reuses 'dm_task' struct for some STATUS operation, but due to
missing reinitization of dm_task target list, it has caused misprocesing
of recieved events as the parsed target has been simply added to the
list of existing status and cause multiple actions being called for
single event.
Fix the version export macros to make it possible to export two
different DM_* versions of a symbol: currently it is only possible for a
DM_* symbol to override a symbol in Base. Attempting to export two
symbols at different DM_* version levels (e.g. DM_1_02_104 and
DM_1_02_106) leads to a linker error due to a duplicate symbol
definition.
This is because the DM_EXPORTED_SYMBOL macro makes each exported symbol
the default (@@VERSION):
__asm__(".symver " #func "_v" #ver ", " #func "@@DM_" #ver )
Fix the macro to use a single '@' for a symbols exported in multiple
versions and rename the macros to DM_EXPORT_*:
DM_EXPORT_SYMBOL(func,ver)
DM_EXPORT_SYMBOL_BASE(func,ver)
For functions that have multiple implementations these macros control
symbol export and versioning.
Function definitions that exist in only one version never need to use
these macros.
Backwards compatible implementations must include a version tag of
the form "_v1_02_104" as a suffix to the function name and use the
macro DM_EXPORT_SYMBOL to export the function and bind it to the
specified version string.
Since versioning is only available when compiling with GCC the entire
compatibility version should be enclosed in '#if defined(__GNUC__)',
for example:
int dm_foo(int bar)
{
return bar;
}
#if defined(__GNUC__)
// Backward compatible dm_foo() version 1.02.104
int dm_foo_v1_02_104(void);
int dm_foo_v1_02_104(void)
{
return 0;
}
DM_EXPORT_SYMBOL(dm_foo,1_02_104)
#endif
A prototype for the compatibility version is required as these
functions must not be declared static.
The DM_EXPORT_SYMBOL_BASE macro is only used to export the base
versions of library symbols prior to the introduction of symbol
versioning: it must never be used for new symbols.
Add a function to test whether the kernel precise_timestamps
feature is available in the current device-mapper driver version.
Presence of precise_timestamps also implies the availability of
latency histograms.
There are reports of unexplained ioctl failures when using dmeventd.
An explanation might be that the wrong value of errno is being used.
Change libdevmapper to store an errno set by from dm ioctl() directly
and provide it to the caller through a new dm_task_get_errno() function.
[Replaced f9510548667754d9209b232348ccd2d806c0f1d8]
Introduce new implmentation of dm_task_get_info() function
with support for reading internal_suspend.
.
This time it is done in a 'versioned' way.
We keep the old fashion dm_task_get_info(Base) to implement
the old behavior of 1.02.95 libdm code.
libdm version 1.02.96 introduced 'macro' wrapper
dm_task_get_info_with_deferred_remove with new implementation
of dm_task_get_info() - we cannot do anything else then to
provide compatible version of this symbol.
Now in version 1.02.97 we add new versioned implementation of
dm_task_get_info(DM_1_02_97) symbol.
This has the effect that i.e. rpm build will finaly resolve proper
dependency on a new symbol - so it will be no longer possible,
to build a new binary and use old library
(rpm -q --provides will show libdevmapper.so.1.02(DM_1_02_97)(64bit))
Also the history is now tracked. If a new function is added (or
reimplemented), it needs to be placed in proper file,
so it could be exported with right versioning symbol.
File .exported_symbols.Base should and any existing older DM
should be treated as read-only after a release.
Also - only libdm has been currently enhanced with versioned .Base
file, as soon as other libs (liblvm, libdevmapper-event) needs changes
they should also get their exported symbol files - meanwhile
make.tmpl handles both cases.
This is probably better approach than 3880ca5eca.
If dm module is not loaded during dm_is_dm_major call, there are no
lines for dm in /proc/devices, of course. Normally, dm_is_dm_major
is called to check existing devices, hence if module is not loaded,
we can expect there's no DM device present at the same time so we
can directly return 0 here (meaning the major number being inspected
is not dm device's one).
See also https://bugzilla.redhat.com/show_bug.cgi?id=1059711.
For dm_is_dm_major to determine whether the major number given as
an argument belongs to a DM device, libdm code needs to know what
the actual DM major is to do the comparison.
It may happen that the dm-mod module is not loaded during this
call and so for the completness let's try our best before we start
giving various errors - we can still make use of dm-mod autoloading,
though only since kernels 2.6.36 where this feature was introduced.
This patch adds a new flag --deferred to dmsetup remove. If this flag is
specified and the device is open, it is scheduled to be deleted on
close.
struct dm_info is extended.
The existing dm_task_get_info() is converted into a wrapper around the
new version dm_task_get_info_with_deferred_remove() so existing binaries
can still use the old smaller structure.
Recompiled code will pick up the new larger structure.
From: Mikulas Patocka <mpatocka@redhat.com>
Recent kernels allow messages to respond with a string.
Add dm_task_get_message_response() to libdevmapper to perform some
basic sanity checks and return this.
Have 'dmsetup message' display any response.
DM statistics will make extensive use of this.
(From Mikulas.)
On each ioctl return, the device UUID is decoded from \xNN format.
If the UUID of the device being *removed* is malformed (e.g. it
hasn't been corrected before), just remove it without any error
as the UUID is not needed anymore - the device is gone anyway.
Otherwise a misleading error message would be issued just after
the removal:
# dmsetup remove test
The UUID "a b" should be mangled but it contains blacklisted characters.
Command failed
Just like we already have existing mangling support for
device-mapper names, we need exactly the same for device-mapper
UUIDs as their character whitelist is wider than what udev supports.
In case udev is used to create entries in /dev based on UUIDs
and these UUIDs contain characters not supported by udev,
we'll end up with incorrect /dev content for such devices.
So we need to mangle them to a form that is supported by udev.
The mangling used for UUIDs follows the mangling used for names
(that is already supported and used throughout). That means,
setting the name mangling mode via dm_set_name_mangling_mode
affects mangling used for UUIDs in exactly the same manner.
It would be useless to add a new and separate
dm_set_uuid_mangling_mode fn, we'll reuse existing interface.
(un)mangle_name -> (un)mangle_string
check_multiple_mangled_name_allowed -> check_multiple_mangled_string_allowed
Just for clarity as the same functions will be reused to (un)mangle dm UUIDs.
Auto mode can't deal with multiple mangled names. We can do that while working
in hex mode, but in auto mode, this would lead to device name ambiguity.