IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Instead of check for lv_is_active() for thin pool LV,
query the whole pool via new pool_is_active().
Fixes a problem when we cannot change discards settings
for active pool device where the actual layer for pool
device was inactive, but thin volumes using thin pool
have been active.
This internal function check for active pool device.
For cluster it checks every thin volume,
On the non-clustered VG we need to check just
for presence of -tpool device.
Update the error path after problems with suspend_lv or vg_commit.
It's not exactly well defined what should happen, and this
code seems to appear in many different instancies<F2> in the
whole source code tree - we should probably pick the best version.
On glibc, those are erroneously (namespace pollution) pulled in via
other headers. this doesn't work with conformant libcs (musl libc in
this case), we simply need to include all needed headers.
Signed-Off-By: John Spencer <maillist-lvm@barfooze.de>
This patch fixes problem reported here:
https://www.redhat.com/archives/dm-devel/2013-January/msg00311.html
Fixing it by separating function for duplicating string token.
---
When /etc/lvm/lvm.conf is truncated at the first '"' of a line, all LVM
utilities crash with a segfault.
The segfault only seems to occur if the last character is the first '"'
(double quote) of a line. If you truncate it at any other point, lvm
detects the error and report parse error
lvm.conf ends like this.
$hexdump -C lvm.conf
....
69 72 20 3d 20 22 2f 64 65 76 22 0a 0a 0a 20 20 |ir = "/dev"... |
20 20 23 20 41 6e 20 61 72 72 61 79 20 6f 66 20 | # An array of |
64 69 72 65 63 74 6f 72 69 65 73 20 74 68 61 74 |directories that|
20 63 6f 6e 74 61 69 6e 20 74 68 65 20 64 65 76 | contain the dev|
69 63 65 20 6e 6f 64 65 73 20 79 6f 75 20 77 69 |ice nodes you wi|
73 68 0a 20 20 20 20 23 20 74 6f 20 75 73 65 20 |sh. # to use |
77 69 74 68 20 4c 56 4d 32 2e 0a 20 20 20 20 73 |with LVM2.. s|
63 61 6e 20 3d 20 5b 20 22 2f 78 22 2c 0a 20 20 |can = [ "/x",. |
20 20 20 20 20 20 20 20 20 20 20 22 | "|
...
Reported-by: dongmao zhang <dmzhang suse com>
There are currently a few issues with the reporting done on RAID LVs and
sub-LVs. The most concerning is that 'lvs' does not always report the
correct failure status of individual RAID sub-LVs (devices). This can
occur when a device fails and is restored after the failure has been
detected by the kernel. In this case, 'lvs' would report all devices are
fine because it can read the labels on each device just fine.
Example:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
However, 'dmsetup status' on the device tells us a different story:
[root@bp-01 lvm2]# dmsetup status vg-lv
0 1024000 raid raid1 2 DA 1024000/1024000
In this case, we must also be sure to check the RAID LVs kernel status
in order to get the proper information. Here is an example of the correct
output that is displayed after this patch is applied:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-p 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-p /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-p /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
The other case where 'lvs' gives incomplete or improper output is when a
device is replaced or added to a RAID LV. It should display that the RAID
LV is in the process of sync'ing and that the new device is the only one
that is not-in-sync - as indicated by a leading 'I' in the Attr column.
(Remember that 'i' indicates an (i)mage that is in-sync and 'I' indicates
an (I)mage that is not in sync.) Here's an example of the old incorrect
behaviour:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[root@bp-01 lvm2]# lvconvert -m +1 vg/lv; lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 0.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg Iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg Iwi-aor-- /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0) ** Note that all the images currently are marked as 'I' even though it is
only the last device that has been added that should be marked.
Here is an example of the correct output after this patch is applied:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[root@bp-01 lvm2]# lvconvert -m +1 vg/lv; lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 0.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0)
** Note only the last image is marked with an 'I'. This is correct and we can
tell that it isn't the whole array that is sync'ing, but just the new
device.
It also works under snapshots...
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg owi-a-r-p 33.47 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg Iwi-aor-p /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-p /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0)
snap vg swi-a-s-- /dev/sda1(51201)
We can avoid many dev_manager (ioctl) calls by caching the results of
previous calls to lv_raid_dev_health. Just considering the case where
'lvs -a' is called to get the attributes of a RAID LV and its sub-lvs,
this function would be called many times. (It would be called at least
7 times for a 3-way RAID1 - once for the health of each sub-LV and once
for the health of the top-level LV.) This is a good idea because the
sub-LVs are processed in groups along with their parent RAID LV and in
each case, it is the parent LV whose status will be queried. Therefore,
there only needs to be one trip through dev_manager for each time the
group is processed.
Similar to the way thin* accesses its kernel status, we add a method
for RAID to grab the various values in its status output without the
higher levels (LVM) having to understand how to parse the output.
Added functions include:
- lib/activate/dev_manager.c:dev_manager_raid_status()
Pulls the status line from the kernel
- libdm/libdm-deptree.c:dm_get_status_raid()
Parses status line and puts components into dm_status_raid struct
- lib/activate/activate.c:lv_raid_dev_health()
Accesses dm_status_raid to deliver raid dev_health string
The new structure and functions can provide a more unified way to access
status information. ('lv_raid_percent' could switch to using these
functions, for example.)
If there was a nested mountpoint inside an existing mount path,
blkdeactivate could fail to unmount such a mountpoint as it
needs to deactivate the deepest path first and continue upwards.
For example the simplest reproducer:
[root@rhel6-a ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 4G 0 disk
|-vg-lvol0 (dm-2) 253:2 0 32M 0 lvm /mnt/a
`-vg-lvol1 (dm-3) 253:3 0 32M 0 lvm /mnt/a/b
Before this patch:
[root@rhel6-a ~]# blkdeactivate -u
Deactivating block devices:
UMOUNT: unmounting vg-lvol0 (dm-2) mounted on /mnt/a
umount: /mnt/a: device is busy.
(In some cases useful info about processes that use
the device is found by lsof(8) or fuser(1))
UMOUNT: unmounting vg-lvol1 (dm-3) mounted on /mnt/a/b
LVM: deactivating Logical Volume vg/lvol1
(deactivation of vg/lvol0 is skipped as /mnt/a that is on lvol0
can't be unmounted - it still has /mnt/a/b as nested mountpoint!)
With this patch applied:
[root@rhel6-a ~]# blkdeactivate -u
Deactivating block devices:
UMOUNT: unmounting vg-lvol1 (dm-3) mounted on /mnt/a/b
UMOUNT: unmounting vg-lvol0 (dm-2) mounted on /mnt/a
LVM: deactivating Logical Volume vg/lvol0
LVM: deactivating Logical Volume vg/lvol1
===
Also, this patch contains a fix for processing mangled mount paths:
[root@rhel6-a ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 4G 0 disk
`-vg-lvol0 (dm-2) 253:2 0 32M 0 lvm /mnt/x y z
[root@rhel6-a ~]# lsblk -r
vg-lvol0 253:2 0 32M 0 lvm /mnt/x\x20y\x20z
(the mount path is mangled with \xNN that is visible in raw
lsblk output only and which is used in blkdeactive as well)
Before this patch:
[root@rhel6-a ~]# blkdeactivate -u
Deactivating block devices:
umount: /mnt/x\x20y\x20z: not found
After this patch applied:
[root@rhel6-a ~]# blkdeactivate -u
Deactivating block devices:
UMOUNT: unmounting vg-lvol0 (dm-2) mounted on /mnt/x\x20y\x20z
LVM: deactivating Logical Volume vg/lvol0
For reseting locale environment into significantly less memory
consuming version 'C' - use LC_ALL instead of LANG since it has
higher priority in locale settings.
Otherwise we may observe whole locale-archive which might be
over 100MB on i.e. Fedora systems locked in memory with
some daemons.
The idea is to avoid a period when an existing VG is not mapped to either the
old or the new name. (Note that the brief "blackout" was present even if the
name did not actually change.) We instead allow a brief overlap of a VG existing
under both names, i.e. a query for a VG might succeed but before a lock is
acquired the VG disappears.
Fix this:
pvcreate /dev/scma
Device /dev/scma not found (or ignored by filtering).
Reported-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Add log/debug_classes to lvm.conf to allow debug messages to be
classified and filtered at runtime.
The dm_errno field is only used by log_error(), so I've redefined it
for log_debug() messages to hold the message class.
By default, all existing messages appear, but we can add categories that
generate high volumes of data, such as logging all traffic to/from
lvmetad.
fmt1 doesn't have a separate commit function: updates take effect
immediately vg_write is called, so we must update lvmetad at this
point if we're going to go on and ask lvmetad for the VG metadata
again before calling the commit function (though that's probably an
unsupported and pointless thing to do anyway as the client must
already have that data and it cannot have changed because it's locked
and with devs suspended we shouldn't be communicating with lvmetad;
so when that's fixed properly, this fix here can be reverted).
This problem showed up as an internal error when lvremoving an LVM1
snapshot.
> Internal error: LV snap1 (00000000000000000000000000000001) missing from preload metadata
https://bugzilla.redhat.com/891855
Rename lvmetad_warning() to lvmetad_connect_or_warn().
Log all connection attempts on the client side, whether successful or not.
Reduce some nesting and remove a redundant assertion.
We need to call sync_local_dev_names directly as pvscan uses
VG_GLOBAL lock and this one *does not* cause the synchronization
(sync_dev_names) to be called on unlock (VG_GLOBAL is not a real VG):
define unlock_vg(cmd, vol)
do { \
if (is_real_vg(vol)) \
sync_dev_names(cmd); \
(void) lock_vol(cmd, vol, LCK_VG_UNLOCK); \
} while (0)
Without this fix, we end up without udev synchronization for the
pvscan --cache (mainly for -aay that causes the VGs/LVs to be
autoactivated) and also udev synchronization cookies are then left
in the system since they're not managed properly (code before sets
up udev sync cookies, but we have to call dm_udev_wait at least once
after that to do the wait and cleanup).