IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When user configured lvm2 to NOT user monitoring, activated mirror
actually hang upon error and it's quite unusable moment.
So instead Warn those 'brave' non-monitoring users about possible
problem and activation mirror without blocking error handling.
This also makes it a bit simpler for test suite to handle trouble
cases when test is running without dmeventd.
When adjusting region size for clustered VG it always needs to fit
2 full bitset into 1MB due to old limits of CPG.
This is relatively big amount of bits, but we have still limitation
for region size to fit into 32bits (0x8000000).
So for too big mirrors this operation needs to fail - so whenever
function returns now 0, it means we can't find matching region_size.
Since return 0 is now 'error' we need to also pass proper region_size
when creating pvmove mirror.
Since extent_size is no longer power_of_2 this max region size
evalution was rather producing random bitsize as a combination
of lowest bit from number of extents and extent size itself.
Correct calculation to use whole LV size and pick biggest
possible power of 2 value smaller then UINT32_MAX.
Drop mirrored mirror log limitation that applies only in very limited
use-case and actually mirrored mirror log is deprecated anyway.
So 'disk' mirror log is selecting the correct minimal size, and
bigger size is only enforced with real mirrored mirror log.
Also for mirrored mirror log we let use 'smalled' region size if needed
so if user uses 1G region size, we still keep small mirror log
with much smaller region size in this case when needed.
Also mirror log extent calculation is now properly detecting error
with too big mirrors where previosly trimmed uint32_t was applies
unintentionally.
Whenever we make visible LV out of previously invisible one,
reload it's table - the is mandator for proper udev rule
processing as well as ensure content of dm table is correct.
TODO: this new generic rule probably make extra raid rules unnecessary.
Only policy 'smq' is meant to be used with format version 2.
Code used to let pass 'mq' policy also with format 2. But 'mq'
is obsoloted wth smq and kernel currently matches it. But this
is incompatible with older original mq logic - so disallow creation
of this rather useless combination.
If the tools for checking thin_pool or cache metadata are missing,
issue rather just a WARNING, but let the operation of activation
continue.
This has the advantage, the if user is missing those tools,
but he already started to use thinpool or cacheing, he can
access these volumes with a WARNING.
Also if the user is using too old tools i.e. for CacheV2 format
dmpd tool 0.7 is required - provide informative WARNING and
skip failure from older tool version which can't understand
new format V2.
In case a newly created RaidLV is blacklisted using config
\"activation { volume list = [ ... ] }\" (i.e. its SubLVs stay inactive),
the metadata SubLVs can't get wiped thus failing the creation.
As a result, the RaidLV together with its SubLVs
is left behind in an inconsistent state.
Fix by removing the RaidLV and provide a hint about volume_list reasoning.
Resolves: rhbz1161347
While prioritized_section() based on raised priority works
nicely for standard lvm comman - separate counter is actually needed
when it's used in daemons like clvmd/dmeventd where priority
stays raised all the time.
Detect we are in prioritezed section instead of critical one,
since these operation were supposed to NOT be happining during
whole set of operation.
This patch fixes verification of udev operations.
Introduce prioritized_section() as a closer match to previous logic
of critical_section() that has been held over longer sequence of
ioctl commands - essentially it's matching operation on a single
cookie.
While 'critical_section()' now corresponds to locked memory - we hold
this memory only between suspend/resume thus notion of 'cookie' was
lost.
This patch restores some logic unintentionaly lost with dropping
memory locking for just activation/deactivation calls.
With these read errors it's useful to know the reason.
Also avoid to log error just once so we know exactly
how many times we did failing read.
On the other hand reduce repeated log_error() on code 'backtrace'
path and change severity of message to just log_debug() so the
actual read error is printed once for one read.
Just like lvm2 has internal devices like _tdata which is using UUID with
suffix, there is similar private type of device for crypto device where
they are using CRYPT-TEMP uuid prefix.
Also ignore stratis.
Some kernel version suffer from bad state transition where a device
steps into 'frozen' mode. Any application that tries to read such
raid gets unfortunatelly bloked.
As some sort of protection try to skip such raid device from being
scanned to minimize chances to block lvm2 command on such scan.
When such device is found, warning gets printed.
RaidLVs on read_only_volume_list have their SubLVs
activated readonly thus disabling metadata updates
or image resynchronization/recovery. Bug also causes
automatic repairs to fail.
Fix by always activating the RAID SubLVs readwrite.
Resolves: rhbz1208269
Just like with lvcreate, this lvconvert case also need to properly
check which LV actually holds lock for cached origin - as it might
be i.e. thin-pool tdata subLV.
When snapshot is created in read-only mode with 'lvcreate -s -pr...',
lvm2 still needs to be able to write to layered -cow volume
to store metadata and exceptions blocks.
TODO: in some case we might be able to do full tree with read-only
volume but this probably needs futher validation:
1. checking snapshot header already exist
2. origin & snapshot are both in read-only mode.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
If componet devices could be activated alone, ensure they are not breaking
common commands.
TODO: mostly likely this is not a definite list of all needed checks
and more will come later.
This is the 'last' place where a LV is present in metadata.
Any removed device should not be left active in dm table.
So this check is an extra validation protection to capture any
forgotten deactivation (adding 1 extra ioctl into lvremove path)
Introduce:
lv_is_component() check is LV is actually a component device.
lv_component_is_active() checking if any component device is active.
lv_holder_is_active() is any component holding device is active.
Instead of checking with existing size of external origin LV,
use correctly the new 'wanted' size of this LV whether it fits
the limitiation requirements for older thin-pool target.
Otherwise code started to the the resize, updates metadata and
just fails during 'resize' in case the LV was active. For
inactive LV operation could have actually passed.
Checking here for cache_pool is not necessary and in effect
the check is not even right - since there are internal
states that do allow to active such LV.