IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The same corner cases that exist for snapshots on mirrors exist for
any logical volume layered on top of mirror. (One example is when
a mirror image fails and a non-repair LVM command is the first to
detect it via label reading. In this case, the LVM command will hang
and prevent the necessary LVM repair command from running.) When
a better alternative exists, it makes no sense to allow a new target
to stack on mirrors as a new feature. Since, RAID is now capable of
running EX in a cluster and thin is not active-active aware, it makes
sense to pair these two rather than mirror+thinpool.
As further background, here are some additional comments that I made
when addressing a bug related to mirror+thinpool:
(https://bugzilla.redhat.com/show_bug.cgi?id=919604#c9)
I am going to disallow thin* on top of mirror logical volumes.
Users will have to use the "raid1" segment type if they want this.
This bug has come down to a choice between:
1) Disallowing thin-LVs from being used as PVs.
2) Disallowing thinpools on top of mirrors.
The problem is that the code in dev_manager.c:device_is_usable() is unable
to tell whether there is a mirror device lower in the stack from the device
being checked. Pretty much anything layered on top of a mirror will suffer
from this problem. (Snapshots are a good example of this; and option #1
above has been chosen to deal with them. This can also be seen in
dev_manager.c:device_is_usable().) When a mirror failure occurs, the
kernel blocks all I/O to it. If there is an LVM command that comes along
to do the repair (or a different operation that requires label reading), it
would normally avoid the mirror when it sees that it is blocked. However,
if there is a snapshot or a thin-LV that is on a mirror, the above code
will not detect the mirror underneath and will issue label reading I/O.
This causes the command to hang.
Choosing #1 would mean that thin-LVs could never be used as PVs - even if
they are stacked on something other than mirrors.
Choosing #2 means that thinpools can never be placed on mirrors. This is
probably better than we think, since it is preferred that people use the
"raid1" segment type in the first place. However, RAID* cannot currently
be used in a cluster volume group - even in EX-only mode. Thus, a complete
solution for option #2 must include the ability to activate RAID logical
volumes (and perform RAID operations) in a cluster volume group. I've
already begun working on this.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
If there is no RAID support in the kernel but the default mirror
segtype is "raid1", converting legacy mirrors can be problematic.
For example, changing the log type or converting a mirror to a linear
LV does not require the RAID modules to be present. However, because
lp->segtype is set to be RAID1 by the configuration file, the command
fails.
We should only be setting lp->segtype when converting mirrors if it is
going to change (e.g. to linear or between mirror types).
When creating a new thin pool and there's no profile requested
via "lvcreate --profile ...", inherit any VG profile if it's attached.
Currently this applies to these settings:
allocation/thin_pool_chunk_size
allocation/thin_pool_discards
allocation/thin_pool_zero
Initial basic support for repair.
It currently takes pool metadata spare volume, which
is used for recovery. New spare is created if the volume
is successfuly repaired.
After the operation the previous _tmeta volume is moved
into _tmeta%d volume and if everything is ok, this volume
could be removed.
New _tmeta needs to be pvmoved to proper place and also
converted to i.e. mirror if it should be mirrored.
Later version will try to automate some steps here.
Suggest to use _tdata and _tmeta devices for that.
This fixes regression from too relaxed change in
f1d5f6ae81
Without this patch there are some empty LVs created before
mirror code recognizes it cannot continue.
(in release fix)
The --type mirror requires -m/--mirrrors:
lvconvert --type mirror vg/lvol0
--type mirror requires -m/--mirrors
Run `lvconvert --help' for more information.
The --type raid* is allowed (the checks already existed):
lvconvert --type raid10 vg/lvol0
Converting the segment type for vg/lvol0 from linear to raid10 is not yet supported.
The --type snapshot is a synonym to -s/--snapshot:
lvconvert -s vg/lvol0 vg/lvol1
Logical volume lvol1 converted to snapshot.
lvconvert --type snapshot vg/lvol0 vg/lvol1
Logical volume lvol1 converted to snapshot.
All the other segment types are not supported, e.g.:
lvconvert --type zero vg/lvol0
Conversion using --type zero is not supported.
Run `lvconvert --help' for more information.
Condition needs to check for passed in pool_metadata_lv_name
which needs to be renamed to _tmeta, for !pool_metadata_lv_name
it's already created with correct _tmeta name.
These settins are customizable by profiles:
allocation/thin_pool_zero
allocation/thin_pool_discards
allocation/thin_pool_chunk_size
activation/thin_pool_autoextend_threshold
activation/thin_pool_autoextend_percent
If the user would upconvert a linear LV to a mirror without specifying
the segment type ("--type mirror" vs "--type raid1"), the "mirror"
segment type would be chosen without consulting the 'default_mirror_segtype'
setting in lvm.conf. This is now used as the basis for determining
which should be used if left unspecified.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
Attempting to up-convert an inactive mirror when there is insufficient
space leads to the following message:
Unable to allocate extents for mirror(s).
ABORTING: Failed to remove temporary mirror layer inactive_mimagetmp_3.
Manual cleanup with vgcfgrestore and dmsetup may be required.
This is caused by a failure to execute the 'deactivate_lv' function in
the error condition. The deactivate returns an error because the LV is
already inactive. This patch checks if the LV is activate and calls
deactivate_lv only if it is. This allows the error cleanup code to work
properly in this condition.
It wasn't that big of a deal anyway, since there was no previous vg_commit
that needed to be reverted. IOW, no harm was done if the allocation failed.
The message was scary and useless.
Usage of layer was not the best plan here - for proper devices stack
we have to keep correct reference in volume_group structure and
make the new thin pool LV appear as a new volume.
Keep the flag whether given thin pool argument has been given on command
line or it's been 'estimated'
Call of update_pool_params() must not change cmdline given args and
needs to know this info.
Since there is a need to move this update function into /lib, we cannot
use arg_count().
FIXME: we need some generic mechanism here.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
Add basic support for converting LV into an external origin volume.
Syntax:
lvconvert --thinpool vg/pool --originname renamed_origin -T origin
It will convert volume 'origin' into a thin volume, which will
use 'renamed_origin' as an external read-only origin.
All read/write into origin will go via 'pool'.
renamed_origin volume is read-only volume, that could be activated
only in read-only mode, and cannot be modified.
Do not allow conversion of external origin into writeable LV,
and prohibit changing the external origin size.
If the snapshot origin is also external origin, merge is prohibited.
We have been using 'mirror_region_size' in lvm.conf as the default region
size for RAID logical volumes as well as mirror logical volumes. Since,
"raid" is more inclusive and representative than "mirror", I have changed
the name of this setting. We must still check for the old setting and warn
the user if we are overriding it with the new setting if both happen to be
present.
Update the error path after problems with suspend_lv or vg_commit.
It's not exactly well defined what should happen, and this
code seems to appear in many different instancies<F2> in the
whole source code tree - we should probably pick the best version.
If a RAID array is not in-sync, replacing devices should not be allowed
as a general rule. This is because the contents used to populate the
incoming device may be undefined because the devices being read where
not in-sync. The kernel enforces this rule unless overridden by not
allowing the creation of an array that is not in-sync and includes a
devices that needs to be rebuilt.
Since we cannot know the sync state of an LV if it is inactive, we must
also enforce the rule that an array must be active to replace devices.
That leaves us with the following conditions:
1) never allow replacement or repair of devices if the LV is in-active
2) never allow replacement if the LV is not in-sync
3) allow repair if the LV is not in-sync, but warn that contents may
not be recoverable.
In the case where a user is performing the repair on the command line via
'lvconvert --repair', the warning is printed before the user is prompted
if they would like to replace the device(s). If the repair is automated
(i.e. via dmeventd and policy is "allocate"), then the device is replaced
if possible and the warning is printed.
We can also use this for conversion between different mirror segment
types. Each new segment type converter then needs to check itself
whether the --stripes is applicable.
Support swapping of metadata device if the thin pool already
exists. This way it's easy to i.e. resize metadata or their
repair operation.
User may create some empty LV, replace existing metadata
or dump and restore them into bigger LV.