IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The libblkid can detect DM_snapshot_cow signature and when creating
new LVs with blkid wiping used (allocation/use_blkid_wiping=1 lvm.conf
setting and --wipe y used at the same time - which it is by default).
Do not issue any prompts about this signature when new LV is created
and just wipe it right away without asking questions. Still keep the
log in verbose mode though.
When LV is scanned for its dependencies - scan also origin's snapshots,
and thin external origins.
So if any PV from snapshot or external origin device is missing - lvm2 will
avoid trying to activate such device.
Replacement of pv_read by find_pv_by_name in commit
651d5093ed caused spurious
error messages when running pvcreate or vgextend against an
unformatted device.
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Physical volume /dev/loop4 not found
Physical volume /dev/loop4 not found
Physical volume "/dev/loop4" successfully created
Volume group "vg1" successfully extended
If we're calling pvcreate on a device that already has a PV label,
the blkid detects the existing PV and then we consider it for wiping
before we continue creating the new PV label and we issue a warning
with a prompt whether such old PV label should be removed. We don't
do this with native signature detection code. Let's make it consistent
with old behaviour.
But still keep this "PV" (identified as "LVM1_member" or "LVM2_member"
by blkid) detection when creating new LVs to avoid unexpected PV label
appeareance inside LV.
This is actually the wipefs functionailty as a matter of fact
(wipefs uses the same libblkid calls).
libblkid is more rich when it comes to detecting various
signatures, including filesystems and users can better
decide what to erase and what should be kept.
The code is shared for both pvcreate (where wiping is necessary
to complete the pvcreate operation) and lvcreate where it's up
to the user to decide.
The verbose output contains a bit more information about the
signature like LABEL and UUID.
For example:
raw/~ # lvcreate -L16m vg
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
or more verbose one:
raw/~ # lvcreate -L16m vg -v
...
Found existing signature on /dev/vg/lvol0 at offset 4096: LABEL="raw.virt:0" UUID="da6af139-8403-5d06-b8c4-13f6f24b73b1" TYPE="linux_raid_member" USAGE="raid"
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
The verbose output is the same output as found in blkid.
The wipe_known_signatures fn now wraps the _wipe_signature fn that is called
for each known signature (currently md, swap and luks). This patch makes the
code more readable, not repeating the same sequence when used anywhere in the
code. We're going to reuse this code later...
Add a PV create which takes a paramters object that
has get/set method to configure PV creation.
Current get/set operations include:
- size
- pvmetadatacopies
- pvmetadatasize
- data_alignment
- data_alignment_offset
- zero
Reference: https://bugzilla.redhat.com/show_bug.cgi?id=880395
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Replace the code with the refactored vgreduce_single instead
of calling its own implementation.
Corrects bug: https://bugzilla.redhat.com/show_bug.cgi?id=989174
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Accept --ignoreskippedcluster with pvs, vgs, lvs, pvdisplay, vgdisplay,
lvdisplay, vgchange and lvchange to avoid the 'Skipping clustered
VG' errors when requesting information about a clustered VG
without using clustered locking and still exit with success.
The messages can still be seen with -v.
The pv resize code required that a lvm_vg_write be done
to commit the change. When the method to add the ability
to list all PVs, including ones that are not assocated with
a VG we had no way for the user to make the change persistent.
Thus additional resize code was move and now liblvm calls into
a resize function that does indeed write the changes out, thus
not requiring the user to explicitly write out he changes.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
As locks are held, you need to call the included function
to release the memory and locks when done transversing the
list of physical volumes.
V2: Rebase fix
V3: Prevent VGs from getting cached and then write protected.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Changes:
- move device type registration out of "type filter" (filter.c)
to a separate and new dev-type.[ch] for common use throughout the code
- the structure for keeping the major numbers detected for available
device types and available partitioning available is stored in
"dev_types" structure now
- move common partitioning detection code to dev-type.[ch] as well
together with other device-related functions bound to dev_types
(see dev-type.h for the interface)
The dev-type interface contains all common functions used to detect
subsystems/device types, signature/superblock recognition code,
type-specific device properties and other common device properties
(bound to dev_types), including partitioning support.
- add dev_types instance to cmd context as cmd->dev_types for common use
- use cmd->dev_types throughout as a central point for providing
information about device types
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
This allows us to get the current on-disk version of the metadata whenever we
have the current in-flight version, without a recourse to scanning or lvmcache.
Avoid hitting memory corruption (double free) in code path,
where PV FID has been already destroyed and the released pointer
was left in PV structure and could have been tried to be released
from there 2nd. time with final context destruction.
This fixes a long standing regression since LVM2 2.02.74 (commit 4efb1d9c,
"Update heuristic used for default and detected data alignment.")
The default PE alignment could be used (via MAX()) even if it was
determined that the device's MD stripe width, or minimal_io_size or
optimal_io_size were not factors of the default PE alignment (either 64K
or the newer default of 1MB, etc). This bug would manifest if the
default PE alignment was larger than the overriding hint that the
device provided (e.g. default of 1MB vs optimal_io_size of 768K).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
The pv_by_path might be also dangerous to use as it does not
count with any other metadata areas but the ones found on the PV
itself. If metadata was not found on the PV referenced by the path,
it returned no PV though it might have been referenced by metadata
elsewhere (on other PVs...).
If extending a VG and including a PV with 0 MDAs that was already
a part of a VG, the vgextend allowed that PV to be added and we
ended up *with one PV in two VGs*!
The vgextend code used the 'pv_by_path' fn that returned a PV for
a given path. However, when the PV did not have any metadata areas,
the fn just returned a PV without any reference to existing VG.
Consequently, any checks for the existing VG failed.
[0] raw/~ # pvcreate --metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdb
Physical volume "/dev/sdb" successfully created
[0] raw/~ # vgcreate vg1 /dev/sda /dev/sdb
Volume group "vg1" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdc
Physical volume "/dev/sdc" successfully created
[0] raw/~ # vgcreate vg2 /dev/sdc
Volume group "vg2" successfully created
Before this patch (incorrect):
[0] raw/~ # vgextend vg2 /dev/sda
Volume group "vg2" successfully extended
With this patch (correct):
[0] raw/~ # vgextend vg2 /dev/sda
Physical volume '/dev/sda' is already in volume group 'vg1'
Unable to add physical volume '/dev/sda' to volume group 'vg2'.
Before, the find_pv_by_name call always failed if the PV found was orphan.
However, we might use this function even for a PV that is not part of any VG.
This patch adds 'allow_orphan' arg to find_pv_by_name fn that allows that.
_find_pv_by_name -> find_pv_by_name
_find_pv_in_vg -> find_pv_in_vg
_find_pv_in_vg_by_uuid -> find_pv_in_vg_by_uuid
The only callers of the underscored variants were their wrappers
without the underscore. No other part of the code referenced the
underscored variants.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
Extract restorable PV creation parameters from struct pvcreate_params into
a separate struct pvcreate_restorable_params for clarity and also for better
maintainability when adding any new items later.
If zero metadata copies are used, there's no further recalculation of
PV alignment that happens when adding metadata areas to the PV and
which actually calculates the alignment correctly as a matter of fact.
So fix this for "PV without MDA" case as well.
Before this patch:
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 1 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 8.00m
After this patch:
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 1 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
Also, remove a superfluous condition "pv->pe_start < pv->pe_align" in:
if (pe_start == PV_PE_START_CALC && pv->pe_start < pv->pe_align)
pv->pe_start = pv->pe_align ...
This part of the condition is not reachable as with the PV_PE_START_CALC,
we always have pv->pe_start set to 0 from the PV struct initialisation
(...the pv->pe_start value is just being calculated).
fmt1 doesn't have a separate commit function: updates take effect
immediately vg_write is called, so we must update lvmetad at this
point if we're going to go on and ask lvmetad for the VG metadata
again before calling the commit function (though that's probably an
unsupported and pointless thing to do anyway as the client must
already have that data and it cannot have changed because it's locked
and with devs suspended we shouldn't be communicating with lvmetad;
so when that's fixed properly, this fix here can be reverted).
This problem showed up as an internal error when lvremoving an LVM1
snapshot.
> Internal error: LV snap1 (00000000000000000000000000000001) missing from preload metadata
https://bugzilla.redhat.com/891855
If the lvmcache_info_from_pvid() fails to find valid
info, invoke the lookup by dev, and only in this case
call lvmcache_info_from_pvid() again.
Also check for the result of info and return
error directly, so the NULL is not passed
to lvmcache_get_label().
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
Adding couple INTERNAL_ERROR reports for unwanted parameters:
Ensure the 'top' metadata node cannot be NULL for lvmetad.
Make obvious vginfo2 cannot be NULL.
Report internal error if handler and vg is undefined.
Check for handle in poll_vg().
Ensure seg is not NULL in dev_manager_transient().
Report missing read_ahead for _lv_read_ahead_single().
Check for report handler in dm_report_object().
Check missing VG in _vgreduce_single().
Define an 'activation_handler' that gets called automatically on
PV appearance/disappearance while processing the lvmetad_pv_found
and lvmetad_pv_gone functions that are supposed to update the
lvmetad state based on PV availability state. For now, the actual
support is for PV appearance only, leaving room for PV disappearance
support as well (which is a more complex problem to solve as this
needs to count with possible device stack).
Add a new activation change mode - CHANGE_AAY exposed as
'--activate ay/-aay' argument ('activate automatically').
Factor out the vgchange activation functionality for use in other
tools (like pvscan...).
Add 3rd daemon return state "unknown" for lookups that are carried out
successfully but don't find the item requested.
Avoid issuing error messages when it's expected that a device that's
being looked up in lvmetad might not be there.
Adding at least stack traces with some FIXMEs for cases,
where we might want to do something cleaver - maybe fail command
or give user hints something is not going well ?
For remote_backup is stack probably 'good' enough for now.
Move commod code to destroy orphan VG into free_orphan_vg() function.
Use orphan vgmem for creation of PV lists.
Remove some free_pv_fid() calls (FIXME: check all of them)
FIXME: Check whether we could merge release_vg back again for all VGs.
Use static buffer instead of stack allocated buffer.
This reduces stack size usage of lvm tool and the
change is very simple.
Since the whole library is not thread safe - it should not
add any new problems - and if there will be some conversion
it's easy to convert this to use some preallocated buffer.
For write we do not need to hold memory locked.
This relaxes many conditions and avoid problems when allocating
a lot of memory for writting metadata buffers.
(In case of huge MDA size this would lead to mismatch between
locked and unlocked memory region size).
Add also internal check we are not writing in critical section.
pvck prints 'extra' character from the label since there is no '\0'
after the struct label entry and just uint64_t follows directly.
So avoid it by limiting 8 chars to be printed.
https://www.redhat.com/archives/lvm-devel/2011-January/msg00109.html
Signed-off-by: Paul Bolle <pebolle tiscali nl>
Properly detect if the filters were refreshed properly.
(May needs few more fixes ??)
Filter refresh may fail because it may be out of free file descriptors
when clvmd gets overloaded.
leaving behind the LVM-specific parts of the code (convenience wrappers that
handle `struct device` and `struct cmd_context`, basically). A number of
functions have been renamed (in addition to getting a dm_ prefix) -- namely,
all of the config interface now has a dm_config_ prefix.
Use debug pool locking functionality. So the command could check,
whether the memory in the pool has not been modified.
For lv_postoder() instead of unlocking and locking for every changed
struct status member do it once when entering and leaving function.
(mprotect would trap each such memory access).
Currently lv_postoder() does not modify other part of vg structure
then status flags of each LV with flags that are reverted back to
its original state after function exit.
Extend vginfo cache with cached VG structure. So if the same metadata
are use, skip mda decoding in the case, the same data are in use.
This helps for operations like activation of all LVs in one VG,
where same data were decoded giving the same output result.
Patch adds 1-to-1 connection between volume_group and lvmcache_vginfo.
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
As this flag could not have been set by the current code - removing it.
Note: because of the wrong code logic this call:
lvmcache_update_vg(correct_vg, correct_vg->status & PRECOMMITTED &
(inconsistent ? INCONSISTENT_VG : 0));
had always passed '0' - now after flag removal it's passing
PRECOMMITTED flag in - this present functinal change in this patch.
To match the original functionality - 0 had to be always passed.
More testing is needed here.
Last usage was removed in Petr's commit related to VG mda repair fix
where relaxed check starts to ignore inconsistencies coming from
PVs that are marked MISSING - thus removing unused variable.
It's useful to keep the partial flag cached - so just move the call
for vg_mark_partil_lvs() into import_vg_from_config_tree() so it gets
evaluated before it goes through the lvmcache.
This patch should not present any functional change.
Note: It is rather temporal solution - proper place is probably inside the
'read' call back - but needs some more discussion.
For now using this minor hack.
transient error), stemming from the following sequence of events:
1) devices fail IO, triggering repair
2) dmeventd starts fixing up the mirror
3) during the downconversion, a new metadata version is written
--> the devices come back online here
4) the mirror device suspend/resume is called to update DM tables
5) during the suspend/resume cycle, *pre*-commit metadata is read;
however, since the failed devices are now back online, we get back
inconsistent set of precommit metadata and the whole operation fails
The patch relaxes the check that fails in step 5 above, namely by ignoring
inconsistencies coming from PVs that are marked MISSING.
Avoid using of already released memory when duplicated MDA is found.
As get_pv_from_vg_by_id() may call lvmcache_label_scan() use the local copy
of the vgname and vgid on the stack as vginfo may dissapear and code was
then accessing garbage in memory.
i.e. pvs /dev/loop0
(when /dev/loop0 and /dev/loop1 has same MDA content)
Invalid read of size 1
at 0x523C986: dm_hash_lookup (hash.c:325)
by 0x440C8C: vginfo_from_vgname (lvmcache.c:399)
by 0x4605C0: _create_vg_text_instance (format-text.c:1882)
by 0x46140D: _text_create_text_instance (format-text.c:2243)
by 0x47EB49: _vg_read (metadata.c:2887)
by 0x47FBD8: vg_read_internal (metadata.c:3231)
by 0x477594: get_pv_from_vg_by_id (metadata.c:344)
by 0x45F07A: _get_pv_if_in_vg (format-text.c:1400)
by 0x45F0B9: _populate_pv_fields (format-text.c:1414)
by 0x45F40F: _text_pv_read (format-text.c:1493)
by 0x480431: _pv_read (metadata.c:3500)
by 0x4802B2: pv_read (metadata.c:3462)
Address 0x652ab80 is 0 bytes inside a block of size 4 free'd
at 0x4C2756E: free (vg_replace_malloc.c:366)
by 0x442277: _free_vginfo (lvmcache.c:963)
by 0x44235E: _drop_vginfo (lvmcache.c:992)
by 0x442B23: _lvmcache_update_vgname (lvmcache.c:1165)
by 0x443449: lvmcache_update_vgname_and_id (lvmcache.c:1358)
by 0x443C07: lvmcache_add (lvmcache.c:1492)
by 0x46588C: _text_read (text_label.c:271)
by 0x466A65: label_read (label.c:289)
by 0x4413FC: lvmcache_label_scan (lvmcache.c:635)
by 0x4605AD: _create_vg_text_instance (format-text.c:1881)
by 0x46140D: _text_create_text_instance (format-text.c:2243)
by 0x47EB49: _vg_read (metadata.c:2887)
Add testing script
Actually, we can call vg_set_fid(vg, NULL) instead of calling
destroy_instance for all PV structs and a VG struct - it's the same
code we already have in the vg_set_fid.
Also, allow exactly the same fid to be set again for the same PV/VG
Before, this could end up with the fid destroyed because we destroyed
existing fid first and then we used the new one and we didn't care
whether existing one == new one by chance.
Instead of searching linear list of all LVs, PVs - use created hash tables
also for quick mapping between LV.
(Note - for small number of PVs or LVs the overhead of the hash is bigger).
TODO: Use hash tables in volume_group structure directly.
Attach \0 for proper char* display - otherwise somewhat random message could
be displayed in debug more and read of unpredictable read of uninitilized
memory values could happen.
As code uses strncpy(system_id, NAME_LEN) and doesn't set '\0'
Fix it by always allocating NAME_LEN + 1 buffer size and with zalloc
we always get '\0' as the last byte.
This bug may trigger some unexpected behavior of the string operation
code - depends on the pool allocator.
FIXME: refactor this code to alloc_vg.
Missing free_vg on error_path in lvmcache_get_vg fn. Call destroy_instance
only if the fid is not part of the vg in backup_read_vg fn (otherwise it's
part of the VG we're returning and we definitely don't want to destroy it!).
This is necessary for proper format instance ref_count support. We iterate
over vg->pvs and vg->removed_pvs list and the ref_count is decremented and
then it is destroyed if not referenced anymore.
Since format instances will use own memory pool, it's necessary to properly
deallocate it. For now, only fid is deallocated. The PV structure itself
still uses cmd mempool mostly, but anytime we'd like to add a mempool
in the struct physical_volume, we can just rename this fn to free_pv and
add the code (like we have free_vg fn for VGs).
This is essential for proper format instance ref_count support. We must
use these functions to set the fid everywhere from now on, even the NULL
value!
Format instances can be created anytime on demand and it contains
metadata area information mostly (at least for now, but in the future,
we may store more things here to update/edit in a PV/VG). In case we
have lots of metadata areas, memory consumption will rise. Using cmd
context mempool is not quite optimal here because it is destroyed too
late. So let's use a separate mempool for format instances.
Reference counting is used because fids could be shared, e.g. each PV
has either a PV-based fid or VG-based fid. If it's VG-based, each PV has
a shared fid with the VG - a reference to VG's fid.
Add _lv_postorder_vg() - for calling _lv_postorder() for every LV from VG.
We use this in 2 places - vg_mark_partial_lvs() and vg_validate()
so make it as a one function.
Benefit here is - to use only one cleanup code and avoid
potentially duplicate scans of same LVs.
Accelerate validation loop by using lvname, lvid, pvid hash tables.
Also merge pvl loop into one cycle now - no need to scan the list twice.
List scan is stopped when dm_hash_insert fails.
The error message with loop_counter1 is no longer provided - however
the message has been misleading anyway.
Create new function alloc_vg() to allocate VG structure.
It takes pool_name (for easier debugging).
and also take vg_name to futher simplify code.
Move remainder of _build_vg_from_pds to _pool_vg_read
and use vg memory pool for import functions.
(it's been using smem -> fid mempool -> cmd mempool)
(FIXME: remove mempool parameter for import functions and use vg).
Move remainder of the _build_vg to _format1_vg_read
We allow writing non-orphan PVs only for resize now. The "orphan PV" assert
in pv_write fn uses the "allow_non_orphan" parameter to control this assert.
However, we should find a more elaborate solution so we can remove this
restriction altogether (pv_write together with vg_write is not atomic, we
need to find a safe mechanism so there's an easy revert possible in case of
an error).
If the PV is already part of the VG (so the pv->fid == vg->fid), it makes no
sense to attach the mdas information from PV to a VG. Instead, we read new
PV metadata information from cache and attach it to the VG fid.
This function also sets a reference to a new VG format instance for all PVs
that are part of the VG so the PV-VG interconnection is consistent after the
change.
Add supporting functions to work with the format instance and metadata area
structures stored within the format instance. Add support for simple indexing
of metadata areas using PV id and mda order (for on-disk PV only for now, we
can extend the indexing even for other mdas if needed - we only need to define
a proper key for the index).
Fixing some const warnings - with API change in:
int vg_extend(struct volume_group *vg, int pv_count, const char *const *pv_names,
Change is needed - as lvm2api expects const behaviour here.
So vg_extend() is doing local strdup for unescaping.
skip_dev_dir return const char* from const char* vg_name.
Rest of the patch is cleanup of related warnings.
Also using dm_report_filed_string() API change to simplify
casting in _string_disp and _lvname_disp.
New strategy for memory locking to decrease the number of call to
to un/lock memory when processing critical lvm functions.
Introducing functions for critical section.
Inside the critical section - memory is always locked.
When leaving the critical section, the memory stays locked
until memlock_unlock() is called - this happens with
sync_local_dev_names() and sync_dev_names() function call.
memlock_reset() is needed to reset locking numbers after fork
(polldaemon).
The patch itself is mostly rename:
memlock_inc -> critical_section_inc
memlock_dec -> critical_section_dec
memlock -> critical_section
Daemons (clmvd, dmevent) are using memlock_daemon_inc&dec
(mlockall()) thus they will never release or relock memory they've
already locked memory.
Macros sync_local_dev_names() and sync_dev_names() are functions.
It's better for debugging - and also we do not need to add memlock.h
to locking.h header (for memlock_unlock() prototyp).
Add configurable option to define minimal size of
of block device usable as a PV.
pv_min_size() is added to lvm-globals and it's being
initialized through _process_config.
Macro PV_MIN_SIZE is unused and removed.
New define DEFAULT_PV_MIN_SIZE_KB is added to lvm-global
and unlike PV_MIN_SIZE it uses KB units.
Should help users with various slow devices attached to the system,
which cannot be easily filtered out (like FDD on /dev/sdX):
https://bugzilla.redhat.com/show_bug.cgi?id=644578
Set cmd->independent_metadata_areas if metadata/dirs or disk_areas in use.
- Identify and record this state.
Don't skip full scan when independent mdas are present even if memlock is set.
- Clusters and OOM aren't supported, so no problem doing the proper scans.
Avoid revalidating the label cache immediately after scanning.
- A simple optimisation.
Support scanning for a single VG in independent mdas.
- Not used by the fix but I left it in anyway as later patches might use it.
This reset of vgmem pointer causes access of already released memory.
(_vg_make_handle allocates vg from vgmem pool itself - which is a bit tricky)
Interestingly this memory fault was missed by our test suite.
Set vg to NULL after releasing it as the following memlock() test may
lead to goto for the second call of vg_release() with the already
released vg pointer.
Use _even_rand() function instead of floor() in _bitset_with_random_bits().
floor() function is missing in dietlibc (on architectures other than x86).
Moreover using floor() to clip rand results does not assure even result
distribution. _even_rand() uses integer arithmetic only and is designed to
return evenly distributed results.
> Looks OK to me. It took a while to decipher what is the exact meaning of
> the loop in _even_rand (to a non-pseudorandomness-expert) but I am
> fairly comfortable with it now. If I understand this correctly, it
> rejects numbers that come from an "incomplete" slice of the RAND_MAX
> space (considering the number space [0, RAND_MAX] is divided into some
> "max"-sized slices and at most a single smaller slice, between [n*max,
> RAND_MAX] for suitable n -- numbers from this last slice are discarded
> because they could distort the distribution in favour of smaller
> numbers).
Signed-off-by: Przemyslaw Iskra <sparky <at> pld-linux.org>
Reviewed-by: Petr Rockai <prockai <at> redhat.com>
In other LVM memory structures such as volume_group, the field
used to store flags is called "status", and on-disk fields are called
'flags', so rename the one inside metadata_area to be consistent.
Not only is it more consistent with existing code but is cleaner
to say "the status of this mda is ignored".
Background for this patch - prajnoha pinged me on IRC this morning
about a fix he was working on related to metadataignore when
metadata/dirs was set. I was reviewing my patches from this year
and realized the 'flags' field was probably not the best choice
when I originally did the metadataignore patches.
Move the creating of the 'attr' strings into a common function so
they can be called from the 'disp' functions as well as the new
'get' property functions.
Add "_dup" suffix to indicate memory is allocated.
Refactor pvstatus_disp to take pv argument and call pv_attr_dup().
This patch is similar to the other patches for pv and vg
functionality, and separates lv functionality into separate
files, concentrating on reporting fields and simple functions.
The metadata.[ch] files are very large. This patch makes a first
attempt at separating out pv functions and data, particularly
related to the reporting fields calculations.
More code could be moved here but for now I'm stopping at reporting
functions 'get' / 'set' functions.
The metadata.[ch] files are very large. This patch makes a first
attempt at separating out vg functions and data, particularly
related to the reporting fields calculations.
Add "devices/default_data_alignment" to lvm.conf to control the internal
default that LVM2 uses: 0==64k, 1==1MB, 2==2MB, etc.
If --dataalignment (or lvm.conf's "devices/data_alignment") is specified
then it is always used to align the start of the data area. This means
the md_chunk_alignment and data_alignment_detection are disabled if set.
(Same now applies to pvcreate --dataalignmentoffset, the specified value
will be used instead of the result from data_alignment_offset_detection)
set_pe_align() still looks to use the determined default alignment
(based on lvm.conf's default_data_alignment) if the default is a
multiple of the MD or topology detected values.
In all top vg read functions only LCK_VG_READ/WRITE can be used.
All other vg lock definitions are low-level backend machinery.
Moreover, LCK_WRITE cannot be tested through bitmask.
This patch fixes these mistakes.
For _recover_vg() we do not need lock_flags, it can be only
two of above and we always upgrading to LCK_VG_WRITE lock there.
(N.B. that code is racy)
There is no functional change in code (despite wrong masking
it produces correct bits:-)
One shiny day we should use libblkid here. But now using LUKS is
very common together with LVM and pvcreate destroys LUKS completely.
So for user's convenience, try to detect LUKS signature and allow abort.
pvcreate detects MD and swap signature.
The logic hidden there is not only documented but it is also
user unfriendly. Who invented this logic should run pvcreate
on its own critical MD device to see why;-)
This patch
- creates one function instead of duplication code
- asks if user want to overwrite signature
- allows aborting (!)
(Please note that writing LVM signatute without wiping old
is wrong, it confuses blkid, MD will not work anyway and
swap and LUKS is broken too.)
The new standard in the storage industry is to default alignment of data
areas to 1MB. fdisk, parted, and mdadm have all been updated to this
default.
Update LVM to align the PV's data area start (pe_start) to 1MB. This
provides a more useful default than the previous default of 64K (which
generally ended up being a 192K pe_start once the first metadata area
was created).
Before this patch:
# pvs -o name,vg_mda_size,pe_start
PV VMdaSize 1st PE
/dev/sdd 188.00k 192.00k
After this patch:
# pvs -o name,vg_mda_size,pe_start
PV VMdaSize 1st PE
/dev/sdd 1020.00k 1.00m
The heuristic for setting the default alignment for LVM data areas is:
- If the default value (1MB) is a multiple of the detected alignment
then just use the default.
- Otherwise, use the detected value.
In practice this means we'll almost always use 1MB -- that is unless:
- the alignment was explicitly specified with --dataalignment
- or MD's full stripe width, or the {minimum,optimal}_io_size exceeds
1MB
- or the specified/detected value is not a power-of-2
Pass metadataignore through PV creation / setup paths.
As a result of this cleanup, we can remove the unnecessary setting
of mda_ignore bits inside pvcreate_single(), after call to pv_create.
For now, just set metadataignore to '0' in some places. This is
equivalent to the prior functionality, although the 0 is given
by the caller not hardcoded in _mda_setup() call.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
- If a PV contained empty mdas, the auto-recovery code was not kicking in.
- The 'inconsistent' state was getting lost when metadata was cached so
recovery didn't kick in. But leave the behaviour alone when using
precommitted metadata because of a warning in a confusing FIXME.
In my testing, pvs and vgs didn't repair inconsistent metadata like they
used to do. (How many other tools fail similarly now?)
And there should be no need to cache inconsistent metadata because it is
supposed to get repaired under the protection of a write lock immediately it is
discovered.
This code is in need of a redesign based on first principles.
I still see bugs in this code and this commit is risky.