IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Conversions of LVs under snapshot to thinpool or cachepool
correctly fail but leave them inactive and provide cryptic
error messages like 'Internal error: #LVs (10) != #visible
LVs (2) + #snapshots (1) + #internal LVs (5) in VG VG'.
Reject and provide better error message.
Resolves: rhbz1514146
The 'lvconvert LV' command def has caused multiple problems
for command matching because it matches the required options
of any lvconvert command. Any lvconvert with incorrect options
ends up matching 'lvconvert LV', which then produces an error
about incorrect options being used for 'lvconvert LV'. This
prevents suggestions from nearest-command partial command matches.
Add a special case for 'lvconvert LV' so that it won't be used
as a partial match for a command that has options specified.
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
When lvmetad is not used, use temporary files to record
which PVs have appeared. Use these temp files to determine
when a VG is complete, to trigger autoactivation.
This change allows us to remove lvmetad while keeping the
same autoactivation behavior that lvmetad provides.
The temp files are created in /run/lvm/pvs_online/ and are
named for the PVID of the PV. The files contain the
major:minor of the device the PV was read from.
e.g. if VG foo has dev1 and dev2, then:
. pvscan --cache -aay dev1
reads vg metadata from dev1
creates /run/lvm/pvs_online/<pvid-of-dev1>
checks if all vg->pvs are online: no
. pvscan --cache -aay dev2
reads vg metadata from dev2
creates /run/lvm/pvs_online/<pvid-of-dev2>
checks if all vg->pvs are online: yes
autoactivates vg
A 'pvscan --cache dev' (without -aay) still records that
dev is online.
A 'pvscan --cache --major X --minor Y' after a device is
gone will remove the temp file for it.
A 'pvscan --cache [-aay]' (no devs) resets the state of
temp files by removing them all, then scanning all devs
and creating temp files for PVs that are found.
If no online files exist, the first pvscan --cache scans
all devs and creates temp files for any PVs found.
The scope of the temp files is only pvscan, and they are only
used for pvscan-based autoactivation. No other commands are
concerned with or aware of these temp files. When lvm creates
or removes PVs, no attempt is made to update the temp files.
Support vgchange usage with VDO segtype.
Also changing extent size need small update for vdo virtual extent.
TODO: API needs enhancements so it's not about adding ifs() everywhere.
When user create vdo-pool - use different automatic name.
So unlike with traditional LVs using lvol0, lvol1
use vpool0, vpool1...
TODO: apply similar for thin-pool & cache-pool...
Checks whether VDO support is enabled.
Detects presence of 'vdoformat' tool which is required for to format VDO pool.
ATM build of VDO is NOT automatically enabled (None is default).
To enable build of LVM with VDO support use:
configure --with-vdo=internal
TODO: Maybe future version may switch to link some small VDO library for formating
(would require linking and package dependency).
To support autoloading of VDO dm target driver loading of 'kvdo'
kernel module is needed - ATM it's not using 'dm-vdo' name.
So to support this strange name - add temporarily solution to
autoload kvdo kernel module in this case.
Introduce VDO plugin for monitoring VDO devices.
This plugin can be used also by other users, as plugin checks
for UUID prefix 'LVM-' and run lvm actions only on those
devices.
Non LVM- device are only monitored and log warnings
when usage threshold reaches 80%.
Update makefile to link with more libs since now whole liblvm-internal.a
is linked-in and this library has futher dependencies.
Avoid including deps for run-unit-test.
Drop linking separate status.c as it's already linked via internal libs.
Check allocation of thin-pool works on 2PVs, when one is so full,
that even metadata do not fit there (as they need at least 2M,
while 99% of 63MB fills >62MB)
When lvm2 command is executed in test mode, discard ioctl is skipped.
This may cause even data-loose in case, issuing discard for released
areas was enabled and user 'tested' lvreduce.
When allocating thin-pool with more then 1 device - try to
allocate 'metadataLV' with reuse of log-type allocation for mirror LV.
It should be naturally place on other device then 'dataLV'.
However due to somewhat hard to follow allocation logic code,
it's been rejected allocation in cases where there was not
enough space for data or metadata on single PV, thus to successed,
usage of segments was mandatory.
While user may use:
allocation/thin_pool_metadata_require_separate_pvs=1
to enforce separe meta and data LV - on default settings, this is not
enable thus segment allocation is meant to work.
NOTE:
As already said - the original intention of this whole 'if()' is unclear,
so try to split this test into multiple more simple tests that are more readable.
TODO: more validation.
When node loading fails, there is not much the caller can do,
since there is 'unknown' set of devices preloaded.
Only suspend during preload knows future precommitted 'metadata',
so it's non-trivial to drop 'preloaded' entries with any later call.
However dm tree tracks newly loaded entries - so in this case it
may simplify the recovery path by dropping preloaded entries so
they are not leaked in the DM table.
Allow creation of any virtual segment type with just --virtualsize
specified without any real extent size give.
TODO: likely --type error,zero might be later enhanced to use -V
(along with -L) - but since those targets do not allocate real
space, supporting -V makes sense with them.