IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Revert commit 31c24dd9f2. This commit
was used to force a RAID device-mapper table to be loaded into the
kernel despite the fact that it was identical to the one already
loaded. The effect allowed a RAID array with a transiently failed
device to refresh and reintegrate the failed device. This operation
is better done in the kernel on a 'resume'. Since,
'lvchange --refresh' already performs a suspend/resume cycle, the
above commit is not needed once the kernel change is made. Reverting
the commit removes an unnecessary (at least for now) change to the
device-mapper interface.
I've updated the dm_status_raid structure and dm_get_status_raid()
function to make it handle the new kernel status fields that will
be coming in dm-raid v1.5.0. It is backwards compatible with the
old status line - initializing the new fields to '0'. The new
structure is also more amenable to future changes. It includes a
'reserved' field that is currently initialized to zero but could
be used to hold flags describing new features. It also now uses
pointers for the character strings instead of attempting to allocate
their space along with the structure (causing the size of the
structure to be variable). This allows future fields to be appended.
The new fields that are available are:
- sync_action : shows what the sync thread in the kernel is doing
(idle, frozen, resync, recover, check, repair, or
reshape)
- mismatch_count: shows the number of discrepancies which were
found or repaired by a "check" or "repair"
process, respectively.
Previous commit included changes to WHATSNEW, but the code changes
were missing. Here is the description from the previous commit:
commit bbc6378b73
Author: Jonathan Brassow <jbrassow@redhat.com>
Date: Thu Feb 21 11:31:36 2013 -0600
RAID: Make 'lvchange --refresh' restore transiently failed RAID PVs
A new function (dm_tree_node_force_identical_table_reload) was added to
avoid the suppression of identical table reloads. This allows RAID LVs
to reload the on-disk superblock information that contains which devices
have failed and the bitmaps. If the failed device has returned, this has
the effect of restoring the device and initiating recovery. Without this
patch, the user had to completely deactivate their RAID LV and re-activate
it in order to restore the failed device. Now they simply need to
suspend and resume (which is done by 'lvchange --refresh').
The identical table suppression is only avoided if the LV is not PARTAIL
(i.e. all of it's devices can be seen and read by LVM) and the kernel
status of the array contains failed devices. In other words, the function
will only be called in the case where we may have success in restoring
a failed device in the array.
There's a possibility to interconnect the dm_config_node with an
ID, which in our case is used to reference the configuration
definition ID from config_settings.h. So simply interconnecting
struct dm_config_node with struct cfg_def_item.
This patch also adds support for enhanced config node output besides
existing "output line by line". This patch adds a possibility to
register a callback that gets called *before* the config node is
processed line by line (for example to include any headers on output)
and *after* the config node is processed line by line (to include any
footers on output). Also, it adds the config node reference itself
as the callback arg in addition to have a possibility to extract more
information from the config node itself if needed when processing the
output callback (e.g. the key name, the id, or whether this is a
section or a value etc...).
If the config node from lvm.conf/--config tree is recognized and valid,
it's always coupled with the config node definition ID from
config_settings.h:
struct dm_config_node {
int id;
const char *key;
struct dm_config_node *parent, *sib, *child;
struct dm_config_value *v;
}
For example if the dm_config_node *cn holds "devices/dev" configuration,
then the cn->id holds "devices_dev_CFG" ID from config_settings.h, -1 if
not found in config_settings.h and 0 if matching has not yet been done.
To support the enhanced config node output, a new structure has been
defined in libdevmapper to register it:
struct dm_config_node_out_spec {
dm_config_node_out_fn prefix_fn; /* called before processing config node lines */
dm_config_node_out_fn line_fn; /* called for each config node line */
dm_config_node_out_fn suffix_fn; /* called after processing config node lines */
};
Where dm_config_node_out_fn is:
typedef int (*dm_config_node_out_fn)(const struct dm_config_node *cn, const char *line, void *baton);
(so in comparison to existing callbacks for config node output, it has
an extra dm_config_node *cn arg in addition)
This patch also adds these functions to libdevmapper:
- dm_config_write_node_out
- dm_config_write_one_node_out
...which have exactly the same functionality as their counterparts
without the "out" suffix. The "*_out" functions adds the extra hooks
for enhanced config output (prefix_fn and suffix_fn mentioned above).
One can still use the old interface for config node output, this is
just an enhancement for those who'd like to modify the output more
extensively.
Export this functionality from libdevmapper just for
convenience and general use when reading boolean values
which could be defined either in a numeric way with 0/1
or by using strings with "true"/"false", "yes"/"no",
"on"/"off", "y"/"n".
Similar to the way thin* accesses its kernel status, we add a method
for RAID to grab the various values in its status output without the
higher levels (LVM) having to understand how to parse the output.
Added functions include:
- lib/activate/dev_manager.c:dev_manager_raid_status()
Pulls the status line from the kernel
- libdm/libdm-deptree.c:dm_get_status_raid()
Parses status line and puts components into dm_status_raid struct
- lib/activate/activate.c:lv_raid_dev_health()
Accesses dm_status_raid to deliver raid dev_health string
The new structure and functions can provide a more unified way to access
status information. ('lv_raid_percent' could switch to using these
functions, for example.)
Add log/debug_classes to lvm.conf to allow debug messages to be
classified and filtered at runtime.
The dm_errno field is only used by log_error(), so I've redefined it
for log_debug() messages to hold the message class.
By default, all existing messages appear, but we can add categories that
generate high volumes of data, such as logging all traffic to/from
lvmetad.
Just like we already have existing mangling support for
device-mapper names, we need exactly the same for device-mapper
UUIDs as their character whitelist is wider than what udev supports.
In case udev is used to create entries in /dev based on UUIDs
and these UUIDs contain characters not supported by udev,
we'll end up with incorrect /dev content for such devices.
So we need to mangle them to a form that is supported by udev.
The mangling used for UUIDs follows the mangling used for names
(that is already supported and used throughout). That means,
setting the name mangling mode via dm_set_name_mangling_mode
affects mangling used for UUIDs in exactly the same manner.
It would be useless to add a new and separate
dm_set_uuid_mangling_mode fn, we'll reuse existing interface.
A regression introduced in 2.02.89 (11e520256b)
caused the lvm dumpconfig <node> to print out
the node as well as its subsequent siblings.
The information about "only_one" mode got lost.
Before this patch (just an example node):
# lvm dumpconfig global/use_lvmetad
use_lvmetad=1
thin_check_executable="/usr/sbin/thin_check"
thin_check_options="-q"
(...all nodes to the end of the section)
With this patch applied:
# lvm dumpconfig global/use_lvmetad
use_lvmetad=1
With latest changes in the udev, some deprecated functions were removed
from libudev amongst which there was the "udev_get_dev_path" function
we used to compare a device directory used in udev and directore set in
libdevmapper. The "/dev" is hardcoded in udev now (udev version >= 183).
Amongst other changes and from packager's point of view, it's also
important to note that the libudev development library ("libudev-devel")
could now be a part of the systemd development library ("systemd-devel")
because of the udev + systemd merge.
Should be faster then strncpy - since we could avoid clearing 4KB pages
with each strncpy(...,PATH_MAX).
Also it's easy to check whether string fit - and eventually avoid
to continue working we incomplete string.
If dm_task_get_name or dm_task_get_names gets called, these will return
unmangled form of the names so the name mangling stays totally transparent
to any libdevmapper user (unless DM_STRING_MANGLING_NONE is used in which
case the name is not touched and it is is returned as it is in kernel).
For example:
dmsetup create "a b" - will create a\x20b device in kernel and so udev will
create /dev/mapper/a\x20b
dm_task_get_name/names will still return "a b"
In AUTO mode, the libdevmapper user can still query the device by using
the mangled ("a\x20b") or unmangled form of the name when calling dm_task_set_name.
If mangled name is provided, it's detected and the name is kept as it is.
If unmangled name is provided, it will be mangled. IOW in AUTO mode it's
totally transparent and it should not require any changes in the code
using libdevmapper.
However, any libdevmapper user must be aware of the fact that the mangled form
of the name appears in /dev/mapper (udev just can't deal with those blacklisted
characters).
dm_task_get_name_mangled will always return mangled form of the name while
the dm_task_get_name_unmangled will always return unmangled form of the name
irrespective of the global setting (dm_set/get_name_mangling_mode).
This is handy in situations where we need to detect whether the name is already
mangled or not. Also display functions make use of it.
If dm_task_set_name/newname is called, the name provided will be
automatically translated to correct encoded form with the hex enconding
so any character not on udev whitelist will be mangled with \xNN
format where NN is hex value of the character used.
By default, the name mangling mode used is the one set during
configure with the '--with-default-name-mangling' option.
This option configures the default name mangling mode used, one of:
AUTO, NONE and HEX.
The name mangling is primarily used to support udev character whitelist
(0-9, A-Z, a-z, #*-.:=@_) so any character that is not on udev whitelist
will get translated into an encoded form \xNN where NN is the hex value
of the character.
It was not possible to pass down the DM_[FORCE|NO]SYNC flags to
'dm_tree_node_add_raid_target'. This meant that converting to 'raid1' from
'mirror' would cause a full resync. (It also meant that '--nosync' was
ineffective when creating a 'raid1' LV.)
I've taken the 'reserved' parameter in 'dm_tree_node_add_raid_target' and
used it for the "flags" parameter. Now it is possible to pass the sync
flags and any other flags that may come up.
This is accomplished by reading associated sysfs information. For a dm device,
this is /sys/dev/block/major:minor/dm/name (supported in kernel version >= 2.6.29,
for older kernels, the behaviour is the same as for non-dm devices).
For a non-dm device, this is a readlink on /sys/dev/block/major:minor, e.g.
/sys/dev/block/253:0 --> ../../devices/virtual/block/dm-0.
The last component of the path is a proper kernel name (block device name).
One can request to read only kernel names by setting the 'prefer_kernel_name'
argument if needed.
LVM- prefix.
Try harder not to leave stray empty devices around (locally or remotely) when
reverting changes after failures while there are inactive tables.
Add dm_get_status_thin_pool and dm_get_status_thin functions to
parse 'params' argument which is received via dm_get_next_target.
Returns filed structure allocated from given mempool.
Remove DM_THIN_ERROR_DEVICE_ID from API.
Remove API warning.
Drop code that was using DM_THIN_ERROR_DEVICE_ID (already commented)
Remove debug message which slipped in through some previous commit.
A little code shuffling and adding support for
DM_THIN_ERROR_DEVICE_ID which might be eventually be used
for activation of thin which is going to be deleted.
For now we do not need it lvm.
The current code does not always assign proper udev flags to sub-LVs (e.g.
mirror images and log LVs). This shows up especially during a splitmirror
operation in which an image is split off from a mirror to form a new LV.
A mirror with a disk log is actually composed of 4 different LVs: the 2
mirror images, the log, and the top-level LV that "glues" them all together.
When a 2-way mirror is split into two linear LVs, two of those LVs must be
removed. The segments of the image which is not split off to form the new
LV are transferred to the top-level LV. This is done so that the original
LV can maintain its major/minor, UUID, and name. The sub-lv from which the
segments were transferred gets an error segment as a transitory process
before it is eventually removed. (Note that if the error target was not put
in place, a resume_lv would result in two LVs pointing to the same segment!
If the machine crashes before the eventual removal of the sub-LV, the result
would be a residual LV with the same mapping as the original (now linear) LV.)
So, the two LVs that need to be removed are now the log device and the sub-LV
with the error segment. If udev_flags are not properly set, a resume will
cause the error LV to come up and be scanned by udev. This causes I/O errors.
Additionally, when udev scans sub-LVs (or former sub-LVs), it can cause races
when we are trying to remove those LVs. This is especially bad during failure
conditions.
When the mirror is suspended, the top-level along with its sub-LVs are
suspended. The changes (now 2 linear devices and the yet-to-be-removed log
and error LV) are committed. When the resume takes place on the original
LV, there are no longer links to the other sub-lvs through the LVM metadata.
The links are implicitly handled by querying the kernel for a list of
dependencies. This is done in the '_add_dev' function (which is recursively
called for each dependency found) - called through the following chain:
_add_dev
dm_tree_add_dev_with_udev_flags
<*** DM / LVM divide ***>
_add_dev_to_dtree
_add_lv_to_dtree
_create_partial_dtree
_tree_action
dev_manager_activate
_lv_activate_lv
_lv_resume
lv_resume_if_active
When udev flags are calculated by '_get_udev_flags', it is done by referencing
the 'logical_volume' structure. Those flags are then passed down into
'dm_tree_add_dev_with_udev_flags', which in turn passes them to '_add_dev'.
Unfortunately, when '_add_dev' is finding the dependencies, it has no way to
calculate their proper udev_flags. This is because it is below the DM/LVM
divide - it doesn't have access to the logical_volume structure. In fact,
'_add_dev' simply reuses the udev_flags given for the initial device! This
virtually guarentees the udev_flags are wrong for all the dependencies unless
they are reset by some other mechanism. The current code provides no such
mechanism. Even if '_add_new_lv_to_dtree' were called on the sub-devices -
which it isn't - entries already in the tree are simply passed over, failing
to reset any udev_flags. The solution must retain its implicit nature of
discovering dependencies and be able to go back over the dependencies found
to properly set the udev_flags.
My solution simply calls a new function before leaving '_add_new_lv_to_dtree'
that iterates over the dtree nodes to properly reset the udev_flags of any
children. It is important that this function occur after the '_add_dev' has
done its job of querying the kernel for a list of dependencies. It is this
list of children that we use to look up their respective LVs and properly
calculate the udev_flags.
This solution has worked for single machine, cluster, and cluster w/ exclusive
activation.