IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The lvm fullreport works per VG and as such, the vg, lv, pv, seg and
pvseg subreport is done for each VG. However, if the PV is not part of
any VG yet, we still want to display pv and pvseg subreports for these
"orphan" PVs - so enable this for lvm fullreport's process_each_vg call.
If there's parent processing handle, we don't need to create completely
new report group and status report - we'll just reuse the one already
initialized for the parent.
Currently, the situation where this matter is when doing internal report
to do the selection for processing commands where we have parent processing
handle for the command itself and processing handle for the selection
part (that is selection for non-reporting tools).
Pass the single vgname as a new process_each_vg arg
instead of setting a cmd flag to tell process_each_vg
to take only the first vgname arg from argv.
Other commands with different argv formats will be
able to use it this way.
CONVERTING status flag is a tricky one. It's not set when converting
a non-mirror LV type to the mirror type, i.e.: linear -> two leg mirror.
Also the conversion itself is instant and doesn't require to be polled.
When mirror reaches sync state there's no final update on VG metadata
for lvmpolld to be made thereby report_progress in fact doesn't report
percentage of mirror being converted but percentage of mirror
being in sync. Perhaps we should reword the lvconvert output here.
On the other hand CONVERTING is set while we upconvert the mirror
from i.e. two leg mirror to four leg mirror. In such case the operation
is required to be polled so that lvmpolld can cleanup temporary
conversion log when the conversion is over.
Ignore CONVERTING lv_type for the moment and match LVs only by uuids
during 'mirror conversion'/'waiting for a sync to finish'.
The unlock call will fail in expected and normal cases,
and should not cause the command to fail. (An actual
unlock in the lock manager should never fail.)
tools/polldaemon.c:465: uninit_use_in_call: Using uninitialized value "id.vg_name" when calling "print_log".
tools/polldaemon.c:465: uninit_use_in_call: Using uninitialized value "id.lv_name" when calling "print_log".
. the poll check will eventually call finish which will
write the VG, so an ex VG lock is needed from lvmlockd.
. fix missing unlock on poll error path
. remove the lockd locking while monitoring the progress
of the command, as suggested by the earlier FIXME comment,
as it's not needed.
tools/polldaemon.c:457: array_null: Comparing an array to null is not useful: "lv->lvid.s"
The lv->lvid.s is never NULL. The check was supposed to be *lv->lvid.s
to check if the string is not empty.
... Using uninitialized value "lockd_state" when calling "lockd_vg"
(even though lockd_vg assigns 0 to the lockd_state, but it looks at
previous state of lockd_state just before that so we need to have
that properly initialized!)
libdm/libdm-report.c:2934: uninit_use_in_call: Using uninitialized value "tm". Field "tm.tm_gmtoff" is uninitialized when calling "_get_final_time".
daemons/lvmlockd/lvmlockctl.c:273: uninit_use_in_call: Using uninitialized element of array "r_name" when calling "format_info_r_action". (just added FIXME as this looks unfinished?)
There's a race when asking lvmpolld about progress_status and
actually reading the progress info from kernel:
Even with lvmpolld being used we read status info from
LVM2 command issued by a user (client side from lvmpolld perspective).
The whole cycle may look like following:
1) set up an operation that requires polling (i.e. pvmove /dev/sda)
2) notify lvmpolld about such operation (lvmpolld_poll_init())
3) in case 1) was not called with --background it would continue with:
4) Ask lvmpolld about progress status. it may respond with one of:
a) in_progress
b) not_found
c) finished
d) any low level error
5) provided the answer was 4a) try to read progress info from polling LV
(i.e. vg00/pvmove1). Repeat steps 4) and 5) until the answer is != 4a).
And now we got into racy configuration: lvmpolld answered with in_progress
but it may be the that in_between 4) and 5) the operation has already
finished and polling LV is already gone or there's nothing to ask for.
Up to now, 5) would report warning and it could print such warning many
times if --interval was set to 0.
We don't want to scary users by warnings in such situation so let's just
print these messages in verbose mode. Error messages due to error while
reading kernel status info (on existing, active and locked LV) remained
the same.
currently in wait_for_single_lv() fn trying to poll missing pvmove LV
is considered success. It may have been already finished by another
instance of polldaemon. either by another forked off polldaemon
or by lvmpolld.
Let's try to handle the mirror conversion and snapshot merge the same
way.
These wrappers have been replaced by direct calls
to vg_read() and find_lv() in previous commits.
This commit should have no functional impact since
all bits were already unreachable.
let's call dev_close_all() only before we're about to 'sleep'
for at least one second during the polling.
(it's questionable whether to call dev_close_all() at all in
polldaemon code. Natural extension would be to drop it completely)
querying future lvmpolld with zero wait time is highly undesirable
and can cause serious performance drop of the future daemon. The new
wrapper function may avoid immediate return from syscal by
introducing minimal wait time on demand.
Routines responsible for polling of in-progress pvmove, snapshot merge
or mirror conversion each used custom lookup functions to find vg and
lv involved in polling.
Especially pvmove used pvname to lookup pvmove in-progress. The future
lvmpolld will poll each operation by vg/lv name (internally by lvid).
Also there're plans to make pvmove able to move non-overlaping ranges
of extents instead of single PVs as of now. This would also require
to identify the opertion in different manner.
The poll_operation_id structure together with daemon_parms structure they
identify unambiguously the polling task.
Waiting even after _check_lv_status returned success and
'finished' flag was set to true doesn't make much sense.
Note that while we skip the wait() we also skip the
init_full_scan_done(0) inside the routine. This should
have no impact as long as the code after _wait_for_single_lv
doesn't presume anything about the state of the cache.
as a part of bigger effort to unify polling intefaces
poll_get_copy_lv should be able to look up LVs based
on theirs lv->status field.
Effective after pvmove starts using poll_get_copy_lv
fn as well.
If the device name is not found in our metadata,
we cannot call strdup few lines later with NULL name.
More intersting story goes behind how it happens -
pvmove removal is unfortunatelly 'multi-state' process
and at some point (for now) we have in lvm2 metadata
LV pvmove0 as stripe and mirror image as error.
If such metadata are left - we fail with any further removal.
we do not allow 0 interval for pvmove command issued
without parameters with classical polldaemon. It would
query the kernel too often with possibly many pvmoves
in-progress.
_check_lv_status was called from within dm_list_iterate_items cycle.
This was utterly wrong! _check_lv_status may remove more than one LV from
vg->lvs list we iterated in the same time.
In some scenarios this could lead to deadlock iterationg over same LV
indefinitely or segfault depending on the circumstances.
Fixed by moving the _check_lv_status outside iterating the vg->lvs
list.
Note that commit 6e7b24d34f was not enough
as _check_lv_status may result in removal of more than one LV from the list.
When we're iterating over LVs in _poll_vg fn, we need to use the safe
version of iteration - the LV can be removed from the list which we're
just iterating over if we're finishing or aborting pvmove operation.
It's cleaner this way - do not mix static and dynamic
(init_processing_handle) initializers. Use the dynamic one everywhere.
This makes it easier to manage the code - there are no "exceptions"
then and we don't need to take care about two ways of initializing the
same thing - just use one common initializer throughout and it's clear.
Also, add more comments, mainly in the report_for_selection fn explaining
what is being done and why with respect to the processing_handle and
selection_handle.
Call _init_processing_handle, _init_selection_handle and
_destroy_processing_handle in process_each_* and related functions to
set up and destroy handles used while processing items.
This patch replaces "void *handle" with "struct processing_handle *handle"
in process_each_*, process_single_* and related functions.
The struct processing_handle consists of two handles inside now:
- the "struct selection_handle *selection_handle" used for
applying selection criteria while processing process_each_*,
process_single_* and related functions (patches using this
logic will follow)
- the "void* custom_handle" (this is actually the original handle
used before this patch - a pointer to custom data passed into
process_each_*, process_single_* and related functions).