IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add:
- support for segment type raid5_n (striped raid with dedicated last parity SubLVs)
- conversion support from striped/raid0/raid0_meta/raid4 to/from raid5_n
- related tests to lvconvert-raid-takeover.sh
Related: rhbz1366296
With recent commit d6a74025df using
INTERNAL_ERROR while cheking layer LV - it's been noticed mirror
logic currently doesn't do a correct thing during upconversion and
does a full-try instead of checking only allocator capabilities.
This leads to invalid usage of layer.
To keep existing code running before providing a fix, relax
INTERNAL_ERROR just an error and keep the 'code' running.
Once mirror code is fixed, these all check should be switched
to internal errors.
Show proper internal error for failing command when there are some
inconsitencies in sizes of LV and its layer instead of rather
meaningless error code 5.
(Could be hit i.e. if user tried to 'resize' cached LV and then
uncache such LV.)
During rework of resize code this validation check
has been lost (in my resize branch). Upstream
is still not supporting resize of any cache type LV
so needs to be prevented.
When we need to clear dirty cache content of cached LV, there
is table reload which usually is shortly followed by next metadata
change. However udev can't (as of now) process udev event
while device is 'suspended'.
So whenever sequence of 'suspend/resume/suspend' is needed,
we need to wait first for finishing of 'resume' processing before
starting next 'suspend'. Otherwise there is 'race' danger of triggering
unwantend umount by systemd as such event will trigger
SYSTEMD_READY=0 state for a moment for such changed device.
Such race is pretty ugly to trace so we may need to review more
sequencies for missing 'sync'.
(Other option is to enhnace 'udev' rules processing to avoid
such dramatic actions to be happening for suspended devices).
Add to commits 87117c2b25 and 0b8bf73a63 to avoid refreshing two
times altogether, thus avoiding issues related to clustered, remotely
activated RaidLV. Avoid need to repeat "lvchange --refresh RaidLV"
two times as a workaround to refresh a RaidLV. Fix handles removal
of temporary *-missing-* devices created for any missing segments
in RAID SubLVs during activation.
Because the kernel dm-raid target isn't able to handle transiently
failing devices properly we need
"[dm-devel][PATCH] dm raid: fix transient device failure processing"
as well.
test: add lvchange-raid-transient-failures.sh
and enhance lvconvert-raid.sh
Resolves: rhbz1025322
Related: rhbz1265191
Related: rhbz1399844
Related: rhbz1404425
Move individual segment validation to a separate function
executed for 'complete_vg'.
Move some 'extra' validation bits from 'raid' validation to global
segtype validation (so extending existing normal validation)
TODO: still some test are left to be moved.
Reduce some duplication in validation process - there are still
some left thought so still room for improving overal speed.
It could be actually better to use even cache origin in
read-only mode so there could no be some 'acidental'
change being done on this volume.
This however need further tools enhancment - where we would need
to handle whole subtree on 'lvchange -pr/-prw'.
Add this functionality to lvconvert:
'lvconvert --thin cachedLV --thinpool vg/poll'
Converts cachedLV to external origin (which will be read-only).
New thin volume is created in thinpool LV and it's using external
origin as source for unprovisioned chunks.
This conversion happens online (while volume is in use).
Thin LV remains fully writable.
Cached external origin no longer could be written so cache will be used
ONLY for read operations. For this limitation we require cache mode
to be writethrough (as writeback cannot write to read-only volumes).
When thinLV is later removed cached external origin is again
fully usable, just note, LV remain in 'read-only' mode.
When read-write is needed, 'lvchange -prw' has to be used.
Single external origin could be user by multiple thinLV in
multiple differen thin pool.
External origin could be reloaded via more locks.
It's actually even more complex then thin-pool,
as it may be active on more nodes for linear LVs
(and maybe even more types).
External origin is always read-only thus unmodifiable
device so there should not be a problem accesing it
through multiple nodes.
Also for thin-pool check first presence of active thin-pool.
FIXME:
It's not easy to detect on which nodes this device is active
Thus manipulation with such device may require checking every
node and it active state and refresh.
But since such setup is quite complex to prepare and use,
hopefully there are not user trying to 'explore' this usage yet.
To be ready to show status of cache volume, call the status
with layer. Layer is automatically detected in this case when
cache volume is used in 'layered' form (needs -real suffix).
Avoid printing misleading message about single dirty block.
Instead properly detect condition where the 'cleaner' policy
needs to be installed without 'overloading' dirty variable.
Also print warning if we would be clearing read-only volume.
(it really shouldn't happen).
External origin could be activated as stand-alone device.
When the last thin LV is removed, external origin is no longer
the external origin and it's layer property was dropped.
Ensure dm table is correct by reloading external origin
(when it's active).
Activation of raid has brough up also splitted image with tracing
(without taking lock for this).
So when raid is now activate - such image is not put into
table (with _rmeta). When user needs such device, just active it.
Commit 0690392040 revealed a problem
in raid metadata manipulation.
We do two operations in one table reload:
- raid leg/image extraction
- rename remaining raid legs
This should be made in separate steps. Otherwise we do an
uncorrectable table change on error path (leaving tables
for admin and dmsetup).
As a hotfix - restore the previous logic and use a single
new function _lv_update_and_reload_list which activates exclusively
extracted LVs on the list before resuming suspended raid LV.
This restore 'rename' functionality upon resume.
Also still preserve the 'origin_only' logic - although we know
it's not working properly for cluster and LV stacking.
Further fixes are needed.
backup is not 'tested' for success and also it should
actually happen just when command is finished.
We do not target to make backups with each inter-step
metadata change.
RAID is LV property
TODO: only 2 flags are seg->status: PVMOVE & MERGING
At least the second one should be soon elimanted as again
we merge LV not a segment.
This is another place for 'common' use pattern or
reload and activation of deleted devices.
(Moving the exclusive activation to _deactivate_and_remove_lvs()).
TODO: looks like halve of raid function is reloading
just 'origin' - and the other full LV.
Fix order of operation when converting raid1 into old mirror.
Before any later metadata modification are initiated prepare
mirror_log device with all clearing.
Then directly convert raid1 into mirror with mirror_log.
This convertion now properly see as precommitted metadata
new 'mirror' and committed old 'raid' and is able to
preload all LVs.
Drop LV from passed API arg - it's always segment being checked.
Also use_layer is now in full control of lv_info_with_seg_status().
It decides which device needs to be checked to get 'the most info'.
TODO: future version should be able to expose status from
In case any SubLV of a RaidLV transiently fails, it needs
two "lvchange --refresh RaidLV" runs to get it to fully
operational mode again. Reason being, that lvm reloads all
targets for the RaidLV tree but doesn't resume the SubLVs
until after the whole tree has been reloaded in the first
refresh run. Thus the live mapping table of the SubLVs
still point to an "error" mapping and the dm-raid target
can't retrieve any superblock from the MetaLV(s) in processing
the constructor during this preload thus not discovering the
again accessible SubLVs. In the second run, the SubLV targets
map proper (meta)data, hence the constructor discovers those
fine now.
Solve by resuming the SubLVs of the RaidLV before
preloading the respective top-level RaidLV target.
Resolves: rhbz1399844
Avoid code duplication and use exiting commonly used
lv_update_and_reload() function.
There is still one place left where mirror is doing strange
double suspend call - needs there more thinking what's wrong with
that code.
When lvconvert adds a new leg - it's doing it free 'temporary' image
layer - however this temporary 'internal' mirror is also MIRRORED LV.
But the status bit was not properly transfered through layer.
Instead of clearing multiple rmeta device with sequential activation
process and waiting for udev for every _rmeta device separately,
activate all _rmeta devices first and then clear them and deactivate
afterwards.
Also update some tracing messages.
When anyhing goes wrong during clearing process, always try to
deactivate as much _rmeta devices as possible before fail.
(Automatic) repair may not be allowed during the initial sync of an upconverted
linear LV, because the data on the failing, primary leg hasn't been completely
synchronized to the N-1 other legs of the raid1 LV (replacing failed legs during
repair involves discontinuing access to any replaced legs data, thus preventing
data recovery on the primary leg e.g. via dd_rescue).
Even though repair would not cause data loss when adding legs to a fully synced
raid1 LV, we don't have information yet defining this state yet (e.g. a raid1
LV flag telling the fully synchronized status before any legs were added),
hence can't automatically decide to allow to repair.
If nonetheless a repair on a non-synced raid1 LVs is intended, the "--force"
option has to be provided.
Resolves: rhbz1311765
Check for dm-raid target version with non-standard raid4 mapping expecting the dedicated
parity device in the last rather than the first slot and prohibit to create, activate or
convert to such LVs from striped/raid0* or vice-versa in order to avoid data corruption.
Add related tests to lvconvert-raid-takeover.sh
Resolves: rhbz1388962
On conversions between striped/raid0* and raid4, the kernel expects
the dedicated raid4 parity SubLVs in the first segment area rather than
in the last it's been allocated to, thus the data mapping ain't proper.
Enhance lvconvert (lib/metadata/raid_manip.c) to shift the dedicated
parity SubLVs on conversions from striped/raid0* to raid4 and vice-versa.
In case of raid0_meta -> raid4 where the MD raid0 personality already has
stored RAID array device positions in the superblocks, the MetaLVs have to
be cleared so that the kernel doesn't fail validating the array positions
after lvm has shifted them up by one.
Add more tests to lvconvert-raid-takeover.sh including one to check for
mapping flaws by converting a created raid4 with filesystem -> striped
and fsck it.
Whilst on it:
- add missing direct striped -> raid4 conversion to the takeover array
to avoid an intermim conversion from striped -> raid0*
- clean up the takeover array
- allow lvconvert to actually call lv_raid_convert() on all takeover requests
in order to check parameters and display messages provided by takeover
functions rather than just "...not supported" from within lvconvert
- fix a typo
Resolves: rhbz1386148
Works if the pool is inactive.
Activation code doesn't notice a new raid dependency in on-disk metadata
when a thin LV is already active.
https://bugzilla.redhat.com/1365286
The dm-raid target now rejects device rebuild requests during ongoing
resynchronization thus causing 'lvconvert --repair ...' to fail with
a kernel error message. This regresses with respect to failing automatic
repair via the dmeventd RAID plugin in case raid_fault_policy="allocate"
is configured in lvm.conf as well.
Previously allowing such repair request required cancelling the
resynchronization of any still accessible DataLVs, hence reasoning
potential data loss.
Patch allows the resynchronization of still accessible DataLVs to
finish up by rejecting any 'lvconvert --repair ...'.
It enhances the dmeventd RAID plugin to be able to automatically repair
by postponing the repair after synchronization ended.
More tests are added to lvconvert-rebuild-raid.sh to cover single
and multiple DataLV failure cases for the different RAID levels.
- resolves: rhbz1371717
Commit 199697accf rerouted funtion
for priting cache volume origin to lvm2app app function - which
however had a bug. So restore the original functionality
and print correct LV as cache origin LV.
Unconditionally guard there is at least 1/4 of metadata volume
free (<16Mib) or 4MiB - whichever value is smaller.
In case there is not enough free space do not let operation proceed and
recommend thin-pool metadata resize (in case user has not
enabled autoresize, manual 'lvextend --poolmetadatasize' is needed).
In the case there is no active thin volume, report thin pool
as lock holder. This fixed function like lvextend
which either expecte lock holder LV is some active thin
or 'possibly' inactive thin pool.
The existing code doesn't understand that mirror logs should cling to
parallel LVs (like extending them) instead of avoiding them.
As a quick workaround to avoid lvcreate failures, hard-code
--alloc normal for mirror logs even if the rest of the allocation
used a stricter policy.
https://bugzilla.redhat.com/show_bug.cgi?id=1376532
Reinstantiate reporting of metadata percent usage for cache volumes.
Also show the same percentage with hidden cache-pool LV.
This regression was caused by optimization for a single-ioctl in
2.02.155.
Introduce 'hard limit' for max number of cache chunks.
When cache target operates with too many chunks (>10e6).
When user is aware of related possible troubles he
may increase the limit in lvm.conf.
Also verbosely inform user about possible solution.
Code works for both lvcreate and lvconvert.
Lvconvert fully supports change of chunk_size when caching LV
(and validates for compatible settings).
'pvmove -n name pv1 pv2' allows to collocate multiple RAID SubLVs
on pv2 (e.g. results in collocated raidlv_rimage_0 and raidlv_rimage_1),
thus causing loss of resilence and/or performance of the RaidLV.
Fix this pvmove flaw leading to potential data loss in case of PV failure
by preventing any SubLVs from collocation on any PVs of the RaidLV.
Still allow to collocate any DataLVs of a RaidLV with their sibling MetaLVs
and vice-versa though (e.g. raidlv_rmeta_0 on pv1 may still be moved to pv2
already holding raidlv_rimage_0).
Because access to the top-level RaidLV name is needed,
promote local _top_level_lv_name() from raid_manip.c
to global top_level_lv_name().
- resolves rhbz1202497
Adding MetaLVs to given DataLVs (e.g. raid0 -> raid0_meta takeover),
_avoid_pvs_with_other_images_of_lv() was missing code to prohibit
allocation when called with a just allocated MetaLV to prohibit
collaocation of the next allocated MetaLV on the same PV.
- resolves rhbz1366738
Enforce mirror/raid0/1/10/4/5/6 type specific maximum images when
creating LVs or converting them from mirror <-> raid1.
Document those maxima in the lvcreate/lvconvert man pages.
- resolves rhbz1366060