IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
After some refactorings, we can now move the bulk of _lvcreate into the
internal library, and we can call from liblvm. In the future, we should
refactor lv_create_single further, probably by segtype, to reduce the
size of struct lvcreate_params. For now this is a reasonable refactor
and allows us to re-use the function from liblvm.
Author: Dave Wysochanski <dwysocha@redhat.com>
The main _lvcreate function should deal with extents - the 'size' parameter
is just an intermediate step.
Should be no functional change.
Author: Dave Wysochanski <dwysocha@redhat.com>
Create a new structure, lvcreate_cmdline_params, to store parameters only
relevant for the cmdline, not the library call to lvcreate.
Should be no functional change.
Author: Dave Wysochanski <dwysocha@redhat.com>
Move extents calculation adjustments into their own local functions
right after we read the vg. This calculation really is not part of
the LV create function but is rather an adjustment to the parameters
based on what is given on the cmdline. So we move it outside the main
_lvcreate.
Should be no functional change.
Author: Dave Wysochanski <dwysocha@redhat.com>
A couple simple refactorings of _lvcreate - should be no functional change.
Move tags_ARG parsing into _lvcreate_params. Also use lp->voriginsize
instread of arg_count(). These refactorings make it easier to move the
bulk of _lvcreate into the library.
Author: Dave Wysochanski <dwysocha@redhat.com>
The implicit pvcreate require either moving the ORPHAN_VG lock outside
pvcreate_single or somehow having the function know or detect whether
the ORPHAN_VG lock is already held.
Author: Dave Wysochanski <dwysocha@redhat.com>
In preparation for implicit pvcreate during vgcreate / vgextend,
move bulk of pvcreate logic inside library.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Author: Dave Wysochanski <dwysocha@redhat.com>
We must hold the VG_ORPHAN lock until we commit to disk. Otherwise,
we risk a race condition on vgcreate / vgextend. Reverts the following
commit:
commit 72a41480ba
Author: Dave Wysochanski <dwysocha@redhat.com>
Date: Fri Jul 10 20:09:21 2009 +0000
Move orphan lock obtain/release inside vg_extend().
With this change we now have vgcreate/vgextend liblvm functions.
Note that this changes the lock order of the following functions as the
orphan lock is now obtained first. With our policy of non-blocking
second locks, this should not be a problem.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
We provide a lock type that behaves like no_locking, but is not
clustered. Moreover, it also forbids any write locks. This magically (and
consistently) prevents use of clustered VGs, or changing local VGs with
--ignorelockingfailure. As a bonus, we can remove the special hacks in a few
places. Of course, people looking for trouble can always set their locking_type
to 0 to override.
In _process_one_vg, we should never proceed if the VG read fails with certain
conditions. If we cannot allocate or construct the volume_group structure,
we should not proceed - this is true regardless of the tool calling the
iterator. In other cases, when the volume group structure is constructed but
there is some error (PVs missing, metadata corrupted, etc), some tools may
want to process the VG while others may not.
Author: Dave Wysochanski <dwysocha@redhat.com>
In vg_backup_single, we should error out if we vg_read_error(vg) and the
error code we received was anything other than FAILED_INCONSISTENT.
Original code contained an error because C operator precedence.
Note - this was part of the vg_read() so no WHATS_NEW entry neceesary.
Author: Dave Wysochanski <dwysocha@redhat.com>
Remove READ_REQUIRE_RESIZEABLE flag from vgsplit similar to the removal from
vgextend. Move the check inside the functions that actually move pvs from
one vg structure to another. Should be no functional change.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
In the future we may export these functions or something like them in liblvm
For now this helps in cleaning up the checks for RESIZEABLE since we can
use the internal library function vg_bad_status_bits.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Move the check for the RESIZEABLE flag inside the vg_extend function.
When we consolidated the vg locking, reading, and status flag checking,
we tied the check for the RESIZEABLE flag to the vg_read() call. The problem
with this is you cannot know what other APIs the application my or may not
call after a vg_read() call. Thus the READ_REQUIRE_RESIZEABLE flag is not
really ideal - ideally we should be checking for this flag on a specific
operation, not inside the vg_read() call. This patch moves one check inside
the library.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Orphan lock is now obtained second and released first, and all tools
are consistent in this regard.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
With this change we now have vgcreate/vgextend liblvm functions.
Note that this changes the lock order of the following functions as the
orphan lock is now obtained first. With our policy of non-blocking
second locks, this should not be a problem.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Move the vg orphan lock inside vg_remove_single, now a complete liblvm
function. Note that this changes the order of the locks - originally
VG_ORPHAN was obtained first, then the vgname lock. With the current
policy of non-blocking second locks, this could mean we get a failure
obtaining the orphan lock. In the case of a vg with lvs being removed,
this could result in the lvs being removed but not the vg. Such a
scenario could have happened prior though with a different failure.
Other tools were examined for side-effects, and no major problems
were noted.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Move check for active LVs outside of library function. The vgremove
liblvm function function will fail if there are active LVs. It will
be the application's responsibility to check this condition and remove
the LVs individually before calling vgremove. Note also that we've
duplicated the EXPORTED_VG check in vgremove_single (tools) and
vg_remove_single (library). Duplication seemed the only option here
since we don't want to do the automatic removal of LVs (in the tools)
if the vg is exported, and we still need to protect the library call
from removal if the vg is exported.
We still need to deal with the ORPHAN lock but vg_remove_single is now
very close to our liblvm function.
TODO: Refactor lvremove in a similar way.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
vg_t *vg_create(struct cmd_context *cmd, const char *vg_name);
This is the first step towards the API called to create a VG.
Call vg_lock_newname() inside this function. Use _vg_make_handle()
where possible.
Now we have 2 ways to construct a volume group:
1) vg_read: Used when constructing an existing VG from disks
2) vg_create: Used when constructing a new VG
Both of these interfaces obtain a lock, and return a vg_t *.
The usage of _vg_make_handle() inside vg_create() doesn't fit
perfectly but it's ok for now. Needs some cleanup though and I've
noted "FIXME" in the code.
Add the new vg_create() plus vg 'set' functions for non-default
VG parameters in the following tools:
- vgcreate: Fairly straightforward refactoring. We just moved
vg_lock_newname inside vg_create so we check the return via
vg_read_error.
- vgsplit: The refactoring here is a bit more tricky. Originally
we called vg_lock_newname and depending on the error code, we either
read the existing vg or created the new one. Now vg_create()
calls vg_lock_newname, so we first try to create the VG. If this
fails with FAILED_EXIST, we can then do the vg_read. If the
create succeeds, we check the input parameters and set any new
values on the VG.
TODO in future patches:
1. The VG_ORPHAN lock needs some thought. We may want to treat
this as any other VG, and require the application to obtain a handle
and pass it to other API calls (for example, vg_extend). Or,
we may find that hiding the VG_ORPHAN lock inside other APIs is
the way to go. I thought of placing the VG_ORPHAN lock inside
vg_create() and tying it to the vg handle, but was not certain
this was the right approach.
2. Cleanup error paths. Integrate vg_read_error() with vg_create and
vg_read* error codes and/or the new error APIs.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
NOTE: vg_set_alloc_policy() returns success if you try to set a value that
is already stored. The behavior of vgchange is the same though - it fails.
There is a fixme noted in the code about this inconsistency, which should
be resolved if possible.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
In liblvm, we will reserve the word 'change' to mean an API that
both sets one or more values, and commits to disk. This will be
consistent with the LVM commandline. The existing vg_change_pesize()
function does not commit to disk, but just changes the extent_size
and ensures all internal structures are updated. This logic should
be contained in a function that sets the value.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
It would be nice to have one function that does all the validation
and setting of the VG's pesize. However, currently some checks
are in the higher-level function _vgchange_pesize(), and some
checks are in the lower function vg_change_pesize().
This patch moves most of the higher-level checks inside
vg_change_pesize. In one case a failure return code is
changed from ECMD_FAILED to EINVALID_CMD_LINE.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove unneeded LOCK_NONBLOCKING from vg_read() API and tools that
use it. We no longer need this flag anywhere since we now automatically
set LCK_NONBLOCK inside lock_vol() if vgs_locked().
For further details, see:
commit d52b3fd3fe
Author: Dave Wysochanski <dwysocha@redhat.com>
Date: Wed May 13 13:02:52 2009 +0000
Remove NON_BLOCKING lock flag from tools and set a policy to auto-set.
As a simplification to the tools and further liblvm, this patch pushes
the setting of NON_BLOCKING lock flag inside the lock_vol() call.
The policy we set is if any existing VGs are currently locked, we
set the NON_BLOCKING flag.
At some point it may make sense to add this flag back if we get an
RFE from a liblvm user, but for now let's keep it as simple as
possible.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove LOCK_KEEP and READ_CHECK_EXISTENCE from vgsplit.
These flags are no longer necessary. We now check for existence
in a differnet function, and it is not necessary to keep the lock.
Removing these flags simplifies the new vg_read() interface.
After this patch, we can fully remove LOCK_KEEP.
READ_CHECK_EXISTENCE needs a bit more work before full removal.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Fix vg_read() error paths to properly release upon vg_read_error().
Note that in the iterator paths (process_each_*()), we release
inside the iterator so no individual cleanup is needed. However there
are a number of other places we missed the cleanup. Proper cleanup
when vg_read_error() is true should be calling vg_release(vg), since
there should be no locks held if we get an error (except in certain
special cases, which IMO we should work to remove from the code).
Unfortunately the testsuite is unable to detect these types of memory
leaks. Most of them can be easily seen if you try an operation
(e.g. lvcreate) with a volume group that does not exist. Error
message looks like this:
Volume group "vg2" not found
You have a memory leak (not released memory pool):
[0x1975eb8]
You have a memory leak (not released memory pool):
[0x1975eb8]
Author: Dave Wysochanski <dwysocha@redhat.com>