IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Target tells us its version, and we may allow different set of options
to be supported with different version of driver.
Idea is to provide individual feature flags and later be
able to query for them.
This patch is intended to fix bug 825323 - FS turns read-only during a double
fault of a mirror leg and mirrored log's leg at the same time. It only
affects a 2-way mirror with a mirrored log. 3+-way mirrors and mirrors
without a mirrored log are not affected.
The problem resulted from the fact that the top level mirror was not
using 'noflush' when suspending before its "down-convert". When a
mirror image fails, the bios are queue until a suspend is recieved. If
it is a 'noflush' suspend, the bios can be safely requeued in the DM
core. If 'noflush' is not used, the bios must be pushed through the
target and if a device is failed for a mirror, that means issuing an
error. When an error is received by a file system, it results in it
turning read-only (depending on the FS).
Part of the problem was is due to the nature of the stacking involved in
using a mirror as a mirror's log. When an image in each fail, the top
level mirror stalls because it is waiting for a log flush. The other
stalls waiting for corrective action. When the repair command is issued,
the entire stacked arrangement is collapsed to a linear LV. The log
flush then fails (somewhat uncleanly) and the top-level mirror is suspended
without 'noflush' because it is a linear device.
This patch allows the log to be repaired first, which in turn allows the
top-level mirror's log flush to complete cleanly. The top-level mirror
is then secondarily reduced to a linear device - at which time this mirror
is suspended properly with 'noflush'.
Use log_warn to print non-fatal warning messages.
Use of log_error would confuse checker for testing
whether proper error has been reported for some real error.
For now this convertions is not supported, thus disabled.
The only supported conversion for now is to create mirrored thin pools
from mirrored devices.
Update code for lvconvert.
Change the lvconvert user interface a bit - now we require 2 specifiers
--thinpool takes LV name for data device (and makes the name)
--poolmetadata takes LV name for metadata device.
Fix type in thin help text -z -> -Z.
Supported is also new flag --discards for thinpools.
When printing a message for the user and the lv_segment pointer is available,
use segtype->ops->name() instead of segtype->name. This gives a better
user-readable name for the segment. This is especially true for the
'striped' segment type, which prints "linear" if there is an area_count of
one.
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
Support has many limitations and lots of FIXMEs inside,
however it makes initial task when user creates a separate LV for
thin pool data and thin metadata already usable, so let's enable
it for testing.
Easiest API:
lvconvert --chunksize XX --thinpool data_lv metadata_lv
More functionality extensions will follow up.
TODO: Code needs some rework since a lot of same code is getting copied.
There were no messages printed upon completiion of RAID device replacement.
This could cause confusion/concern during automated recovery, because the
user sees the failure messages but no other messages indicating correction.
s/Issue/Use/, otherwise it is easy to misread "Issue" as "Issuing" - causing
the user confusion as to whether the action was performed automatically or
whether they need to issue the command.
'_lv_update_log_type' takes a lvconvert_params argument so that it can pass
down the user's preference of 'region_size' and allocation_policy. When
'mirror_remove_missing' was introduced (commit ID
95986e42a1) it didn't make sense to pass down
user preferences - so NULL was given instead. While it may never happen in
practice, static analysis reveals that this argument could be dereferenced.
So, if the user preferences were not passed in, glean the necessary fields
from what is already set in the LV.
Reported-by: Zdenek Kabelac <zkabelac@redhat.com>
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
(Not updating WHATSNEW for this simple clean-up.)
The RAID plug-in for dmeventd now calls 'lvconvert --repair' to address failures
of devices in a RAID logical volume. The action taken can be either to "warn"
or "allocate" a new device from any spares that may be available in the
volume group. The action is designated by setting 'raid_fault_policy' in
lvm.conf - the default being "warn".
RAID is not like traditional LVM mirroring. LVM mirroring required failed
devices to be removed or the logical volume would simply hang. RAID arrays can
keep on running with failed devices. In fact, for RAID types other than RAID1,
removing a device would mean substituting an error target or converting to a
lower level RAID (e.g. RAID6 -> RAID5, or RAID4/5 to RAID0). Therefore, rather
than removing a failed device unconditionally and potentially allocating a
replacement, RAID allows the user to "replace" a device with a new one. This
approach is a 1-step solution vs the current 2-step solution.
example> lvconvert --replace <dev_to_remove> vg/lv [possible_replacement_PVs]
'--replace' can be specified more than once.
example> lvconvert --replace /dev/sdb1 --replace /dev/sdc1 vg/lv
Example:
~> lvconvert --type raid1 vg/mirror_lv
Steps to convert "mirror" to "raid1"
1) Allocate a RAID metadata LV for each mirror image from the same PVs
on which they are located.
2) Clear the metadata LVs. This involves writing LVM metadata, so we don't
change any aspects of the mirror LV before this so that the user can easily
remove LVs from the failed convert attempt while retaining the original
mirror.
3) Remove the mirror log, if it exists.
4) Add metadata LVs to mirror LV
5) Rename mirror sub-lvs (s/mimage/rimage/)
6) Change flags and segtype from mirror to raid1
Example:
~> lvconvert --type raid1 -m 1 vg/lv
The following steps are performed to convert linear to RAID1:
1) Allocate a metadata device from the same PV as the linear device
to provide the metadata/data LV pair required for all RAID components.
2) Allocate the required number of metadata/data LV pairs for the
remaining additional images.
3) Clear the metadata LVs. This performs a LVM metadata update.
4) Create the top-level RAID LV and add the component devices.
We want to make any failure easy to unwind. This is why we don't create the
top-level LV and add the components until the last step. Should anything
happen before that, the user could simply remove the unnecessary images. Also,
we want to ensure that the metadata LVs are cleared before forming the array to
prevent stale information from polluting the new array.
A new macro 'seg_is_linear' was added to allow us to distinguish linear LVs
from striped LVs.
~> lvconvert --splitmirrors 1 --trackchanges vg/lv
The '--trackchanges' option allows a user the ability to use an image of
a RAID1 array for the purposes of temporary read-only access. The image
can be merged back into the array at a later time and only the blocks that
have changed in the array since the split will be resync'ed. This
operation can be thought of as a partial split. The image is never completely
extracted from the array, in that the array reserves the position the device
occupied and tracks the differences between the array and the split image via
a bitmap. The image itself is rendered read-only and the name (<LV>_rimage_*)
cannot be changed. The user can complete the split (permanently splitting the
image from the array) by re-issuing the 'lvconvert' command without the
'--trackchanges' argument and specifying the '--name' argument.
~> lvconvert --splitmirrors 1 --name my_split vg/lv
Merging the tracked image back into the array is done with the '--merge'
option (included in a follow-on patch).
~> lvconvert --merge vg/lv_rimage_<n>
The internal mechanics of this are relatively simple. The 'raid' device-
mapper target allows for the specification of an empty slot in an array
via '- -'. This is what will be used if a partial activation of an array
is ever required. (It would also be possible to use 'error' targets in
place of the '- -'.) If a RAID image is found to be both read-only and
visible, then it is considered separate from the array and '- -' is used
to hold it's position in the array. So, all that needs to be done to
temporarily split an image from the array /and/ cause the kernel target's
bitmap to track (aka "mark") changes made is to make the specified image
visible and read-only. To merge the device back into the array, the image
needs to be returned to the read/write state of the top-level LV and made
invisible.
Users already have the ability to split an image from an LV of "mirror"
segtype. This patch extends that ability to LVs of "raid1" segtype.
This patch only allows a single image to be split off, however. (The
"mirror" segtype allows an arbitrary number of images to be split off.
e.g. 4-way => 3-way/linear, 2-way/2-way, linear,3-way)
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
The conditional is not just unnecessary, it would have been wrong. The code
is suppose to be checking if the 'splitmirrors_ARG' is negative, but it
instead is checking 'mirrors_ARG'. Rather than changing the argument being
checked, I've pulled the check entirely because 'splitmirrors_ARG' is already
guarenteed to not be negative by virtue of the fact that it is a 'int_arg'.
Negative values will be caught in _process_command_line().
Since format instances will use own memory pool, it's necessary to properly
deallocate it. For now, only fid is deallocated. The PV structure itself
still uses cmd mempool mostly, but anytime we'd like to add a mempool
in the struct physical_volume, we can just rename this fn to free_pv and
add the code (like we have free_vg fn for VGs).