IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The same corner cases that exist for snapshots on mirrors exist for
any logical volume layered on top of mirror. (One example is when
a mirror image fails and a non-repair LVM command is the first to
detect it via label reading. In this case, the LVM command will hang
and prevent the necessary LVM repair command from running.) When
a better alternative exists, it makes no sense to allow a new target
to stack on mirrors as a new feature. Since, RAID is now capable of
running EX in a cluster and thin is not active-active aware, it makes
sense to pair these two rather than mirror+thinpool.
As further background, here are some additional comments that I made
when addressing a bug related to mirror+thinpool:
(https://bugzilla.redhat.com/show_bug.cgi?id=919604#c9)
I am going to disallow thin* on top of mirror logical volumes.
Users will have to use the "raid1" segment type if they want this.
This bug has come down to a choice between:
1) Disallowing thin-LVs from being used as PVs.
2) Disallowing thinpools on top of mirrors.
The problem is that the code in dev_manager.c:device_is_usable() is unable
to tell whether there is a mirror device lower in the stack from the device
being checked. Pretty much anything layered on top of a mirror will suffer
from this problem. (Snapshots are a good example of this; and option #1
above has been chosen to deal with them. This can also be seen in
dev_manager.c:device_is_usable().) When a mirror failure occurs, the
kernel blocks all I/O to it. If there is an LVM command that comes along
to do the repair (or a different operation that requires label reading), it
would normally avoid the mirror when it sees that it is blocked. However,
if there is a snapshot or a thin-LV that is on a mirror, the above code
will not detect the mirror underneath and will issue label reading I/O.
This causes the command to hang.
Choosing #1 would mean that thin-LVs could never be used as PVs - even if
they are stacked on something other than mirrors.
Choosing #2 means that thinpools can never be placed on mirrors. This is
probably better than we think, since it is preferred that people use the
"raid1" segment type in the first place. However, RAID* cannot currently
be used in a cluster volume group - even in EX-only mode. Thus, a complete
solution for option #2 must include the ability to activate RAID logical
volumes (and perform RAID operations) in a cluster volume group. I've
already begun working on this.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
Simulate crash of the system and restarted pvmove after next VG
activation.
Test is catching regression introduced in 2.02.99 for partial tree
creation changes.
After enable_dev, the following commands were not
consistently seeing the pv on it.
Alasdair explained, "whenever enabling/disabling devs
outside the tools (and you aren't trying to test how
the tools cope with suddenly appearing/disappering
devices) use "vgscan""
Patch includes RAID1,4,5,6,10 tests for:
- setting writemostly/writebehind
* syncaction changes (i.e. scrubbing operations)
- refresh (i.e. reviving devices after transient failures)
- setting recovery rate (sync I/O throttling)
while the RAID LVs are under a thin-pool (both data and metadata)
* not fully tested because I haven't found a way to force bad
blocks to be noticed in the testsuite yet. Works just fine
when dealing with "real" devices.
Test moving linear, mirror, snapshot, RAID1,5,10, thinpool, thin
and thin on RAID. Perform the moves along with a dummy LV and
also without the dummy LV by specifying a logical volume name as
an argument to pvmove.
These test the toollib functions that select
vgs/lvs to process based on command line args:
empty, vg name(s), lv names(s), vg tag(s),
lv tags(s), and combinations of all.
1) Since the min|maxrecoveryrate args are size_kb_ARGs and they
are recorded (and sent to the kernel) in terms of kB/sec/disk,
we must back out the factor multiple done by size_kb_arg. This
is already performed by 'lvcreate' for these arguments.
2) Allow all RAID types, not just RAID1, to change these values.
3) Add min|maxrecoveryrate_ARG to the list of 'update_partial_unsafe'
commands so that lvchange will not complain about needing at
least one of a certain set of arguments and failing.
4) Add tests that check that these values can be set via lvchange
and lvcreate and that 'lvs' reports back the proper results.
In those places where mirrors were being created while assuming
a default segment type of "mirror", we include the '--type mirror'
argument to explicitly set the segment type. This will preserve
the mirror testing that is performed even though the default
mirroring segment type is now "raid1".
Suggest to use _tdata and _tmeta devices for that.
This fixes regression from too relaxed change in
f1d5f6ae81f4723e6aeb2f04bd68cba59cd65403
Without this patch there are some empty LVs created before
mirror code recognizes it cannot continue.
(in release fix)
When the merging of snapshot is finished, we need to clean dm table
intries for snapshot and -cow device. So for merging snapshot
we have to activate_lv plain 'cow' LV and let the table
resolver to its work - shortly deactivation_lv() request
will follow - in cluster this needs LV lock to be held by clvmd.
Also update a test - add small wait - if lvremove is not 'fast enough'
and merging process has not been stopped and $lv1 removed in background.
Ortherwise the following lvcreate occasionally finds name $lv1 still in use.
(in release fix)
We check the version number of dm-raid before testing certain
features to make sure they are present. However, this has
become somewhat complicated by the fact that the version #'s
in the upstream kernel and the REHL6 kernel have been diverging.
This has been a necessity because the upstream kernel has
undergone ABI changes that have necessitated a bump in the
'Y' component of the version #, while the RHEL6 kernel has not.
Thus, we need to know that the ABI has not changed but the
features have been added. So, the current version #'ing stands
as follows:
RHEL6 Upstream Comment
======|==========|========
** Same until version 1.3.1 **
------|----------|--------
N/A | 1.4.0 | Non-functional change.
| | Removes arg from mapping function.
------|----------|--------
1.3.2 | 1.4.1 | RAID10 fix redundancy validation checks.
------|----------|--------
1.3.5 | 1.4.2 | Add RAID10 "far" and "offset" algorithm support.
| | Note this feature came later in RHEL6 as part of
| | a separate update/feature.
------|----------|--------
1.3.3 | 1.5.0 | Add message interface to allow manipulation of
| | the sync_action.
| | New status (STATUSTYPE_INFO) fields: sync_action
| | and mismatch_cnt.
------|----------|--------
1.3.4 | 1.5.1 | Add ability to restore transiently failed devices
| | on resume.
------|----------|--------
1.3.5 | 1.5.2 | 'mismatch_cnt' is zero unless [last_]sync_action
| | is "check".
------|----------|--------
To simplify, writemostly/writebehind, scrubbing, and transient device
failure restoration are all tested based on the same version
requirements: (1.3.5 < V < 1.4.0) || (V > 1.5.2). Since kernel
support for writemostly/writebehind has been around for some time,
this could mean a reduction in the scope of kernels tested for this
feature. I don't view this as much of a problem, since support for
this feature was only recently added to LVM. Thus, the user would
have to be using a very recent LVM version with an older kernel.
The mismatch count reported by a dm-raid kernel target used
to be effectively random, unless it was checked after a
"check" scrubbing action had been performed. Updates to the
kernel now mean that the mismatch count will be 0 unless a
check has been performed and discrepancies had been found.
This has been the intended behaviour all along.
This patch updates the test suite to handle the change.
- lvs -o lv_attr has now 10 indicator bits
- use '--ignoremonitoring' instead of the shortcut '--ig' used before (since
it would be ambiguous with new '--ignoreactivationskip')
Test the different RAID lvchange scenarios under snapshot as well.
This patch also updates calculations for where to write to an
underlying PV when testing various syncactions.
If the user would upconvert a linear LV to a mirror without specifying
the segment type ("--type mirror" vs "--type raid1"), the "mirror"
segment type would be chosen without consulting the 'default_mirror_segtype'
setting in lvm.conf. This is now used as the basis for determining
which should be used if left unspecified.
When vgname has not existed in metadata, it has crashed on double free
in format_instance destroy() - since VG was created, used FID and was
released - which also released FID, so further use was accessing bad
memory.
Fix it for this code path before release_vg() so FID will exists
when _vg_read_file_name() returns NULL.
Assumed size of 4M was too large and the test was failing because
'dd' was failing to perform its write.
Calculate the size we need to write with 'dd' instead, so we
don't overrun the device.
aux updates:
prepare_vg now created clustered VG for cluster tests.
since dm-raid doesn't work in cluster, skip the cluster
test when someone checks for dm-raid target until fixed.
Support vgsplit for VGs with thin pools and thin volumes.
In case the thin data and thin metadata volumes are moved to a new VG,
move there also all related thin volumes and check that external origins
are also present in this new VG.
For non udev path use DM_DEFAULT_NAME_MANGLING_MODE.
Skip this test when using real /dev dir, since udev is not able
to create such device name unless mangled...