IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
Handle the case where pvscan --cache -aay (with no dev args)
gets to the final PV, completing the VG, but that final PV does not
have VG metadata. In this case, we need to use VG metadata from a
previously scanned PV in the same VG, which we saved for this
possibility. Using this saved metadata, we can find which VG
this PVID belongs to, and then check if that VG is now complete,
and if so add the VG name to the list of complete VGs to be
autoactivated.
Fix to previous commit
"pvscan: ignore online for shared and foreign PVs"
which was incorrectly considering a PV foreign if its
VG had no system ID when the host did have a system ID.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.
When a VG has multiple PVs, and all those PVs come online
at the same time, concurrent pvscans for each PV will all
create the individual pvid files, and all will often see
the VG is now complete. This causes each of the pvscan
commands to think it should activate the VG, so there
are multiple activations of the same VG. The vg lock
serializes them, and only the first pvscan actually does
the activation, but there is still a lot of extra overhead
and time used by the other pvscans that attempt to
activate the already active VG. This can lead to a backlog
of pvscans and timeouts.
To fix this, this adds a new /run/lvm/vgs_online/ dir that
works like the existing /run/lvm/pvs_online/ dir. Each pvscan
that wants to activate a VG will first try to exlusively create
the file vgs_online/<vgname>. Only the first pvscan will
succeed, and that one will do the VG activation. The other
pvscans will find the vgname file exists and will not do the
activation step.
When a PV goes offline, the vgs_online file for the corresponding
VG is removed. This allows the VG to be autoactivated again
when the PV comes online again. This requires that the vgname be
stored in the pvid files.
An idea from Zdenek for better ensuring valid hints by invalidating
them when pvscan --cache <device> sees a new PV, which is a case
where we know that hints should be invalidated. This is triggered
from systemd/udev logic, and there may be some cases where it would
invalidate hints that the existing methods wouldn't detect.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
Since configure.h is a generated header and it's missing traditional
ifdefs preambule - it can be included & parsed multiple times.
Normally compiler is fine when defines have same value and there is
no warning - yet we don't need to parse this several times
and by adding -include directive we can ensure every file
in the package is rightly compile with configure.h as the
first header file.
If we are running the test where the device is /dev/* we will will
run the unit tests 'test_nesting' and 'test_pv_symlinks'. Otherwise
we will skip them.
This is a followup patch to commit edb72cb70c
to support related lvm2 test suite tests.
A 'global/support_mirrored_mirror_log' bool configuration variable gets
introduced allowing the creation of, or conversion to mirrored 'mirror'
logs if set. The capability to create these in turn allows the rest of
the tests to perform activation of such existing LVs and their conversions
to disk/core 'mirror' logs.
Display a disclaimer warning if enabled that this is not for regular use.
Add definition of the enabled config option to respective test scripts.
Related: rhbz1643562
Ensure configure.h is always 1st. included header.
Maybe we could eventually introduce gcc -include option, but for now
this better uses dependency tracking.
Also move _REENTRANT and _GNU_SOURCE into configure.h so it
doesn't need to be present in various source files.
This ensures consistent compilation of headers like stdio.h since
it may produce different declaration.