IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Two problems fixed by this patch:
- PV tags were not recognized at all when using them with pvs
report that has only label fields (regression since 2.02.105)
- incorrect persistent .cache file to be generated after pvs
report that has only label fields (regression since 2.02.106)
These bugs come from the transition from process_each_pv to
process_each_label introduced by commit
67a7b7a87da65b2350f975272e581be5f41976e0 and commit
490226fc475232e0b158cf9fdc8670a663da4efe and related.
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
Add --foreign to the remaining reporting and display commands plus
vgcfgbackup.
Add a NEEDS_FOREIGN_VGS flag for vgimport to always set --foreign.
If lvmetad is being used with --foreign, scan foreign VGs (currently
implemented as a full PV scan).
Handle these things centrally in lvmcmdline.c.
Also allow lvchange and vgchange -an/-aln to deactivate any foreign
LVs that happen to be active if something went wrong.
Remember to set the system ID when creating a new VG in vgsplit.
Move the lvm1 sys ID into vg->lvm1_system_id and reenable the #if 0
LVM1 code. Still display the new-style system ID in the same
reporting field, though, as only one can be set.
Add a format feature flag FMT_SYSTEM_ON_PVS for LVM1 and disallow
access to LVM1 VGs if a new-style system ID has been set.
Treat the new vg->system_id as const.
In 2.02.99, _init_tags() inadvertently began to ignore the
dm_config_tree struct passed to it. "tags" sections are not
merged together, so the "tags" section in the main config file was
being processed repeatedly and other "tags" sections were ignored.
Before, we refreshed filters and we did full rescan of devices if
we passed through wiping (wipe_known_signatures fn call). However,
this fn returns success even if no signatures were found and so
nothing was wiped. In this case, it's not necessary to do the
filter refresh/rescan of devices as nothing changed clearly.
This patch exports number of wiped signatures from all the
wiping functions below. The caller (_pvcreate_check) then checks
whether any wiping was done at all and if not, no refresh/rescan
is done, saving some time and resources.
pvcreate code path executes signature wiping if there are any signatures
found on device to prepare the device for PV. When the signature is wiped,
the WATCH udev rule triggers the event which then updates udev database
with fresh info, clearing the old record about previous signature.
However, when we're using udev db as dev-ext source, we'd need to wait
for this WATCH-triggered event. But we can't synchronize against such
events (at least not at this moment). Without this sync, if the code
continues, the device could still be marked as containing the old
signature if reading udev db. This may end up even with the device
to be still filtered, though the signature is already wiped.
This problem is then exposed as (an example with md components):
$ mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sda /dev/sdb --run
$ mdadm -S /dev/md0
$ pvcreate -y /dev/sda
Wiping linux_raid_member signature on /dev/sda.
/dev/sda: Couldn't find device. Check your filters?
$ echo $?
5
So we need to temporarily switch off "udev" dev-ext source here
in this part of pvcreate code until we find a way how to sync
with WATCH events.
(This problem does not occur with signature wiping which we do
on newly created LVs since we already handle this properly with
our udev flags - the LV_NOSCAN/LV_TEMPORARY flag. But we can't use
this technique for non-dm devices to keep WATCH rule under control.)
Invalid devices no longer included in the counters printed at the end.
May now need to use --ignoreskippedcluster if relying upon exit status.
If more than one change is requested per-PV, attempt to perform them
all. Note that different arguments still handle exit status
differently.
When lvmetad is used and at the same time we're getting list of all
PV-capable devices, we can't use cmd->filter (which is used to filter
out lvmetad responses - so we're sure that the devices are PVs already).
To get the list of PV-capable devices, we're bypassing lvmetad (since
lvmetad only caches PVs, not all the other devices which are not PVs).
For this reason, we have to use the "full_filter" filter chain (just
like we do when we're running without lvmetad).
Example scenario:
- sdo and sdp components of MD device md0
- sdq, sdr and sds components of mpatha multipath device
- mpatha multipath device partitioned
- vda device partitioned
=> sdo,sdp,sdr,sds, mpatha and vda should be filtered!
$ lsblk -o NAME,TYPE
NAME TYPE
sdn disk
sdo disk
`-md0 raid0
sdp disk
`-md0 raid0
sdq disk
`-mpatha mpath
`-mpatha1 part
sdr disk
`-mpatha mpath
`-mpatha1 part
sds disk
`-mpatha mpath
`-mpatha1 part
vda disk
|-vda1 part
`-vda2 part
|-fedora-swap lvm
`-fedora-root lvm
Before this patch:
==================
use_lvmetad=0 (correct behaviour!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
use_lvmetad=1 (incorrect behaviour - sdo,sdp,sdq,sdr,sds and mpatha not filtered!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/sdo --- 0 0
/dev/sdp --- 0 0
/dev/sdq --- 0 0
/dev/sdr --- 0 0
/dev/sds --- 0 0
/dev/vda --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
With this patch applied:
========================
use_lvmetad=1
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
This makes a difference when using selection criteria based on
these fields - if those fields are defined as DM_REPORT_FIELD_TYPE_SIZE
(in contrast to DM_REPORT_FIELD_TYPE_NUMBER), units are also
recognize in selection clause.
For example:
$ lvs -o+seg_start vg1/lv2
LV VG Attr LSize Start
lv2 vg1 -wi-a----- 12.00m 0
lv2 vg1 -wi-a----- 12.00m 8.00m
Before this patch:
$ lvs -o+seg_start --select 'seg_start=8m'
Found size unit specifier but numeric value expected for selection field seg_start.
Selection syntax error at 'seg_start=8m'.
Use 'help' for selection to get more help.
With this patch applied:
$lvs -o+seg_start --select 'seg_start=8m'
LV VG Attr LSize Start
lv2 vg1 -wi-a----- 12.00m 8.00m
(the same applies for ba_start and vg_free fields)
We already allowed -S|--select with {vg,lv,pv}display -C (which
was then equal to {vg,lv,pv}s command. Since we support selection
in toolib now, we can support -S also without using -C in *display
commands now.
We have 3 input report types:
- LVS (representing "_select_match_lv")
- VGS (representing "_select_match_vg")
- PVS (representing "_select_match_pv")
The input report type is saved in struct selection_handle's "orig_report_type"
variable.
However, users can use any combination of fields of different report types in
selection criteria - the resulting report type can thus differ. The struct
selection_handle's "report_type" variable stores this resulting report type.
The resulting report_type can end up as one of:
- LVS
- VGS
- PVS
- SEGS
- PVSEGS
This patch adds logic to report_for_selection based on (sensible) combination
of orig_report_type and report_type and calls appropriate reporting functions
or iterates over multiple items that need reporting to determine the selection
result.
Once LVM_COMMAND_PROFILE environment variable is specified, the profile
referenced is used just like it was specified using "<lvm command> --commandprofile".
If both --commandprofile cmd line option and LVM_COMMAND_PROFILE env
var is used, the --commandprofile cmd line option gets preference.
all sockets opened by a daemon or handed over by systemd
have to have CLOEXEC flag set. Otherwise we get nasty
warnings about leaking descriptors in processes spawned by
daemon.
for_each_sub_lv() now scans in depth also pools, however for
rename we actually do want to skip pools.
So add a new for_each_sub_lv_except_pools() to be used by rename,
every other user of for_each_sub_lv() scans every sub LV with pools
included.
This is i.e. necessary for properly working preload of pools
that are using raid arrays.
This is a regression from v115 where some of the fields/properties
were converted to using the common "struct lvinfo" and
"struct lv_seg_status" so we don't need to issue info and status
ioctl several times per one reported line. Not all fields are
converted yet, but one that *is* converted is the lv_attr field
with the lv_attr_dup counterpart used in lvm_lv_get_attr lvm2app fn.
These changes were introduced with e34b004422f0d51263e0d34f4064556cfc9148f6
and later - this patch introduced the "info_ok" field in the
lv_with_info_and_seg_status structure which encapsulates the lvinfo
and lv_seg_status struct.
For the lv_attr_dup, the lv_attr_dup code missed the
assignment for the "info_ok" flag which saves the result of the
lv_info_with_seg_status call. Hence such info was marked
as unusable - unknown and it was returned as such via lvm_lv_get_attr
lvm2app fn.
When cache_mode is undefined, the read of metadata will miss to
set a bit with mode and fails to process metadata on internal
error:
Internal error: LV vg/lvol1 has uknown feature flags 0.
Fix it by setting it to writethrough mode.
When repairing thin pool or swapping thin pool metadata,
preserve chunk_size property and avoid to be automatically changed
later in the code to better match thin pool metadata size.
When raid leg is extracted, now the preload code handles this state
correctly and put proper new table entry into dm tree,
so the activation of extracted leg and removed metadata works
after commit.
When raid is being splitted, extracted leg & metadata
is still floating in the table - and thus we need to
detect this case and properly preload their matching
table so consequent activation of extracted LVs properly
renames (and FREES) existing raid images, so ongoing
image name shifting will work.
For example, with dmeventd/executable set to "" which is not allowed for
this setting, the config validation now ends up with:
$ lvm dumpconfig --validate
Configuration setting "dmeventd/executable" invalid. It cannot be set to an empty value.
LVM configuration invalid.
This check for empty values for string config settings was not
done before (we only checked empty arrays, but not scalar strings).
Rename original lv_error_when_full field to lv_when_full and also
convert it from binary field to string field displaying three
possible values: "error", "queueu" or "" (blank for undefined).
$ lvs vg/pool vg/pool1 vg/linear_lv -o+lv_when_full
LV VG Attr LSize Data% Meta% WhenFull
linear_lv vg -wi-a----- 4.00m
pool vg twi-aotz-- 4.00m 0.00 0.98 queue
pool1 vg twi-a-tz-- 4.00m 0.00 0.88 error
For -S|--select these synonyms are recognized:
"error" -> "error when full", "error if no space"
"queue" -> "queue when full", "queue if no space"
"" -> "undefined"
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
An 'lvconvert --repair $RAID_LV" to replace a failed leg of a multi-segment
RAID10/4/5/6 logical volume can lead to allocation of (parts of) the replacement
image component pair on the physical volume of another image component
(e.g. image 0 allocated on the same PV as image 1 silently impeding resilience).
Patch fixes this severe resilince issue by prohibiting allocation on PVs
already holding other legs of the RAID set. It allows to allocate free space
on any operational PV already holding parts of the image component pair.
Normally, if there are partitions defined on top of device-mapper
device, there should be a device-mapper device created for each
partiton on top of the old one and once the underlying DM device
is used by another devices (partition mappings in this case),
it can't be used as a PV anymore.
However, sometimes, it may happen the partition mappings are
missing - either the partitioning tool is not creating them if
it does not contain full support for device-mapper devices or
the mappings were removed.
Better safe than sorry - check for partition header on DM devs
and filter them out as unsuitable for PVs in case the check is
positive. Whatever the user is doing, let's do our best to prevent
unwanted corruption (...by running pvcreate on top of such device
that would corrupt the partition header).
If pvscan is run with device path instead of major:minor pair and this
device still exists in the system and the device is not visible anymore
(due to a filter that is applied), notify lvmetad properly about this.
This makes it more consistent with respect to existing pvscan with
major:minor which already notifies lvmetad about device that is gone
due to filters.
However, if the device is not in the system anymore, we're not able
to translate the original device path into major:minor pair which
lvmetad needs for its action (lvmetad_pv_gone fn). So in this case,
we still need to use major:minor pair only, not device path. But at
least make "pvscan --cache DevicePath" as near as possible to "pvscan
--cahce <major>:<minor>" functionality.
Also add a note to pvscan man page about this difference when using
pvscan --cache with DevicePath and major:minor pair.
No need to use awk now to get appropriate VGs/LVs, use LVM's
own --select - it's quicker, it removes a need for external
dependency on awk and it's also more readable.