IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The new command 'pvck --dump metadata PV' will extract
the current version of VG metadata from a PV for testing
and debugging. --dump metadata_area extracts the entire
text metadata area.
teardown after the test was failing, probably because
of uncoordinated udev actions running on the test
system. Try to avoid this by doing some work before
teardown.
lvm2 till version 2.02.169 (commit 78d004efa8a1809cea68283e6204edfa9d7c1091)
was printing invalid creation_time argument into metadata on 32bit arch.
However with commit ba9820b14223b731125c83dbc9709aa44fdcdbf1 we started
to properly validate all input numbers and thus we refused to accept
invalid metadata with 'garbage' string - but this results in the
situation where metadata produced on older lvm2 on 32 bit architecture
will become unreadable after upgrade.
To fix this case - extend libdm parser in a way, that whenever we
find error integer value, we also check if the parsed value is not for
creation_time node and in this case we let the metadata pass through
with made-up date 2018-05-24 (release date of 2.02.169).
commit aa75b31db5478
"pvscan: handle case of scanning PV without metadata last"
failed to recognize that an arg may be null in the case of
'pvscan --cache' (without -aay) which does not keep track
of complete VGs because it does not need to activate them.
The scanning rework missed removing this instance of label scan.
It's no longer needed because of the way that label scan is always
run once from the start of the command. This unnecessary scan
would be triggered by running 'pvs @tag'.
If an md component is not excluded by other means and
vg_read is used to read metadata from it, then this new
check compares the device size with the PV size, and runs
a full md check on the device if the sizes don't match.
and don't call it from inside pvcreate_each_device.
This avoids having to repeat it for users of
pvcreate_each_device (pvcreate/pvremove/vgcreate/vgextend.)
Remove the fixme comment describing the case that was
fixed by aa75b31db54782fb24b6b7e3c681a61b3579117c
"pvscan: handle case of scanning PV without metadata last"
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
wipe_lv knows it's going to write the device, so it
can open rw from the start. It was opening readonly,
and then dev_write needed to reopen it readwrite.
To avoid tiny race on checking arrival of signal and entering select
(that can latter remain stuck as signal was already delivered) switch
to use pselect().
If it would needed, we can eventually add extra code for older systems
without pselect(), but there are probably no such ancient systems in
use.
Handle the case where pvscan --cache -aay (with no dev args)
gets to the final PV, completing the VG, but that final PV does not
have VG metadata. In this case, we need to use VG metadata from a
previously scanned PV in the same VG, which we saved for this
possibility. Using this saved metadata, we can find which VG
this PVID belongs to, and then check if that VG is now complete,
and if so add the VG name to the list of complete VGs to be
autoactivated.
When hints are invalid and ignored, the list of hints
could be non-empty (from additions before an invalid
hint was found). This confused the calling code which
was checking for an empty list to see if hints were used.
Ensure the list is empty when hints are not used.