IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
pvid and vgid are sometimes a null-terminated string, and
other times a 'struct id', and the two types were often
cast between each other. When a struct id was cast to a char
pointer, the resulting string would not necessarily be null
terminated. Casting a null-terminated string id to a
struct id is fine, but is still avoided when possible.
A struct id is: int8_t uuid[ID_LEN]
A string id is: char pvid[ID_LEN + 1]
A convention is introduced to help distinguish them:
- variables and struct fields named "pvid" or "vgid"
should be null-terminated strings.
- variables and struct fields named "pv_id" or "vg_id"
should be struct id's.
- examples:
char pvid[ID_LEN + 1];
char vgid[ID_LEN + 1];
struct id pv_id;
struct id vg_id;
Function names also attempt to follow this convention.
Avoid casting between the two types as much as possible,
with limited exceptions when known to be safe and clearly
commented.
Avoid using variations of strcpy and strcmp, and instead
use memcpy/memcmp with ID_LEN (with similar limited
exceptions possible.)
When check active componet of thinLV with external origin,
we need to check if the external origin isn't already active.
For this however we need to use layered check for -real device.
Devices made only from 'error' target cannot be used,
but if the device is also combined from 'zero' target
the same rule can be applied as such device cannot be used.
Just like with other segtype use this function to get whole
raid status info available per a single ioctl call.
Also it nicely simplifies read of percentage info about
in_sync portion of raid volume.
TODO: drop use of other calls then lv_raid_status call,
since all such calls could already use status - so it just
adds unnecessary duplication.
Reduce ioctl count and avoid separate info check,
when we can get the same info from status ioctl.
When devmanager calls return 0, then the exists value 0
means the reason of failure is missing device in table.
In such case we avoid stack trace.
Swap the flush parameter for the vdo status function
to match thin pool status.
When LV is deactivativate, we check for presence, and later
for some LV types also for being in use.
We can however do this check in 1 step for them a remove extra ioctl.
Add return value '2' to lv_check_not_in_use() to recognize LV is not
present.
Existing users were just testing for 0, so no change for them.
Make the generic "device is not usable" message from filter-usable
more specific in case the device is not usable because it's an LV.
(i.e. when scan_lvs=0)
Initial support for thin-pool used slightly smaller max size 15.81GiB
for thin-pool metadata. However the real limit later settled at 15.88GiB
(difference is ~64MiB - 16448 4K blocks).
lvm2 could not simply increase the size as it has been using hard cropping
of the loaded metadata device to avoid warnings printing warning of kernel
when the size was bigger (i.e. due to bigger extent_size).
This patch adds the new lvm.conf configurable setting:
allocation/thin_pool_crop_metadata
which defaults to 0 -> no crop of metadata beyond 15.81GiB.
Only user with these sizes of metadata will be affected.
Without cropping lvm2 now limits metadata allocation size to 15.88GiB.
Any space beyond is currently not used by thin-pool target.
Even if i.e. bigger LV is used for metadata via lvconvert,
or allocated bigger because of to large extent size.
With cropping enabled (=1) lvm2 preserves the old limitation
15.81GiB and should allow to work in the evironement with
older lvm2 tools (i.e. older distribution).
Thin-pool metadata with size bigger then 15.81G is now using CROP_METADATA
flag within lvm2 metadata, so older lvm2 recognizes an
incompatible thin-pool and cannot activate such pool!
Users should use uncropped version as it is not suffering
from various issues between thin_repair results and allocated
metadata LV as thin_repair limit is 15.88GiB
Users should use cropping only when really needed!
Patch also better handles resize of thin-pool metadata and prevents resize
beoyond usable size 15.88GiB. Resize beyond 15.81GiB automatically
switches pool to no-crop version. Even with existing bigger thin-pool
metadata command 'lvextend -l+1 vg/pool_tmeta' does the change.
Patch gives better controls 'coverted' metadata LV and
reports less confusing message during conversion.
Patch set also moves the code for updating min/max into pool_manip.c
for better sharing with cache_pool code.
When using cache with a cachevol, the cache_check tool was
not being run on the cache metadata during activation.
cache_check clears the needs_check flag in the cache
metadata, so if the flag was set due to an unclean
shutdown, the activation would fail.
Introduce structures lv_status_thin_pool and
lv_status_thin (pair to lv_status_cache, lv_status_vdo)
Convert lv_thin_percent() -> lv_thin_status()
and lv_thin_pool_percent() + lv_thin_pool_transaction_id() ->
lv_thin_pool_status().
This way a function user can see not only percentages, but also
other important status info about thin-pool.
TODO:
This patch tries to not change too many other things,
but pool_below_threshold() now uses new thin-pool info to return
failure if thin-pool cannot be actually modified.
This should be handle separately in a better way.
When thetable reload fails during suspend() - we were only calling
plain resume() - and this will reload only those devices,
which were left suspend, but will not try to restore
metadata state according to lvm2 reverted metadata.
So if we were reloading device tree - we have restored
only top-level LV and rest of reverted device manipulation
were left alone and possibly mismatched what is in committed
metadata.
FIXME: There are several cases were such revert will likely not work
properly anyway as some operation are currenly handled in single commit,
while they need multiple commits, but it's step towards better correctness.
At least we catch there errors now earlier.
This is probably somewhat experimantal patch - but when i.e. raid device
is just extend, there should not be a technical need for flush,
unless the target would stricly need it. It should allow faster
processing of lvm command not being blocked by possibly longer flush.
Since we do not support rimage & rmeta for snapshots - we can
avoid quering for -cow devices and add them as origin_only -
since their snapshots (-cow) could have never existed.
This redumes several ioctl operation during table preloading.
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m
When vdopool is activated standalone - we use a wrapping linear device
to hold actual vdo device active - for this we can set-up read-only
device to ensure there cannot be made write through this device to
actual pool device.
Fix the anoying kernel message reported:
device-mapper: cache: 253:2: metadata operation 'dm_cache_commit' failed: error = -5
which has been reported while cachevol has been removed.
Happened via confusing variable - so switch the variable to commonly user '_size'
which presents a value in sector units and avoid 'scaling' this as extent length
by vg extent size when placing 'error' target on removal path.
Patch shouldn't have impact on actual users data, since at this moment
of removal all date should have been already flushed to origin device.
m
Enhance lv_info with lv_info_with_name_check.
This 'variant' not only check existance if UUID in DM table
but also compares its DM name whether it's matching expected LV name.
Otherwise activation may 'skip' activation with rename in case the
DM UUID already exists, just device is different name.
This change make fairly easier manipulation with i.e. detached mirror
leg which ATM is using same UUID - just the LV name have been changed.
Used code was not able to run 'activation' (and do a rename) and just
skipped the call. So the code used to do a workaround and 'tried'
to deactivate such LV firts - this however work only in non-clvmd case,
as cluster was not having the lock for deactivated LV.
With this extended lv_info code will run 'activation' and will
synchronize the name to match expected LV name.
Patch extends _lv_info() with new paramter 'with_name_check',
which is later translated into 'name_check' argument for
_info_run() which in case of name mismatch evaluates the
check as if device does not exists.
Such call is only used in one place _lv_activate() which then
let activation run. All other invocation of _info() calls
are left intact.
TODO: fix mirror table manipulation (and raid)....
When checking device id of a thin device that is just being
merged - the snapshot actually could have been already finished
which means '-real' suffix for the LV is already gone and just LV
is there - so check explicitely for this condition and use
correct UUID for this case.
Since code is using -cdata and -cmeta UUID suffixes, it does not need
any new 'extra' ID to be generated and stored in metadata.
Since introduce of new 'segtype' cache+CACHE_USES_CACHEVOL we can
safely assume 'new' cache with cachevol will now be created
without extra metadata_id and data_id in metadata.
For backward compatibility, code still reads them in case older
version of metadata have them - so it still should be able
to activate such volumes.
Bonus is lowered size of lv structure used to store info about LV
(noticable with big volume groups).
Enhance activation of cached devices using cachevol.
Correctly instatiace cachevol -cdata & -cmeta devices with
'-' in name (as they are only layered devices).
Code is also a bit more compacted (although still not ideal,
as the usage of extra UUIDs stored in metadata is troublesome
and will be repaired later).
NOTE: this patch my brink potentially minor incompatiblity for 'runtime' upgrade
If the linear mapping is lost (for whatever reason, i.e.
test suite forcible 'dmsetup remove' linear LV,
lvm2 had hard times figuring out how to deactivate such DM table.
So add function which is in case inactive VDO pool LV checks if
the pool is actually still active (-vpool device present) and
it has open count == 0. In this case deactivation is allowed
to continue and cleanup DM table.
Enhance 'activation' experience for VDO pool to more closely match
what happens for thin-pools where we do use a 'fake' LV to keep pool
running even when no thinLVs are active. This gives user a choice
whether he want to keep thin-pool running (wihout possibly lenghty
activation/deactivation process)
As we do plan to support multple VDO LVs to be mapped into a single VDO,
we want to give user same experience and 'use-patter' as with thin-pools.
This patch gives option to activate VDO pool only without activating
VDO LV.
Also due to 'fake' layering LV we can protect usage of VDO pool from
command like 'mkfs' which do require exlusive access to the volume,
which is no longer possible.
Note: VDO pool contains 1024 initial sectors as 'empty' header - such
header is also exposed in layered LV (as read-only LV).
For blkid we are indentified as LV with UUID suffix - thus private DM
device of lvm2 - so we do not need to store any extra info in this
header space (aka zero is good enough).
When lvm2 is activating layered pool LV (to basically keep pool opened,
the other function used to be 'locking' be in sync with DM table)
use this LV in read-only mode - this prevents 'write' access into
data volume content of thin-pool.
Note: since EMPTY/unused thin-pool is created as 'public LV' for generic
use by any user who i.e. wish to maintain thin-pool and thins himself.
At this moment, thin-pool appears as writable LV. As soon as the 1st.
thinLV is created, layer volume will appear is 'read-only' LV from this moment.
Since we need to preserve allocated strings across 2 separate
activation calls of '_tree_action()' we need to use other mem
pool them dm->mem - but since cmd->mem is released between
individual lvm2 locking calls, we rather introduce a new separate
mem pool just for pending deletes with easy to see life-span.
(not using 'libmem' as it would basicaly keep allocations over
the whole lifetime of clvmd)
This patch is fixing previous commmit where the memory was
improperly used after pool release.
With previous patch 30a98e4d67 we
started to put devices one pending_delete list instead
of directly scheduling their removal.
However we have operations like 'snapshot merge' where we are
resuming device tree in 2 subsequent activation calls - so
1st such call will still have suspened devices and no chance
to push 'remove' ioctl.
Since we curently cannot easily solve this by doing just single
activation call (which would be preferred solution) - we introduce
a preservation of pending_delete via command structure and
then restore it on next activation call.
This way we keep to remove devices later - although it might be
not the best moment - this may need futher tunning.
Also we don't keep the list of operation in 1 trasaction
(unless we do verify udev symlinks) - this could probably
also make it more correct in terms of which 'remove' can
be combined we already running 'resume'.
Resuming of 'error' table entry followed with it's dirrect removal
is now troublesame with latest udev as it may skip processing of
udev rules for already 'dropped' device nodes.
As we cannot 'synchronize' with udev while we know we have devices
in suspended state - rework 'cleanup' so it collects nodes
for removal into pending_delete list and process the list with
synchronization once we are without any suspended nodes.
When pvmove is finished, we do a tricky operation since we try to
resume multiple different device that were all joined into 1 big tree.
Currently we use the infromation from existing live DM table,
where we can get list of all holders of pvmove device.
We look for these nodes (by uuid) in new metadata, and we do now a full
regular device add into dm tree structure. All devices should be
already PRELOAD with correct table before entering suspend state,
however for correctly working readahead we need to put correct info
also into RESUME tree. Since table are preloaded, the same table
is skip and resume, but correct read ahead is now set.
Udev is running udev-rule action upon 'resume'.
However lvm2 in special case is doing replacement of
'soon-to-be-removed' device with 'error' target for resuming
and then follows actual removal - the sequence is usually quick,
so when udev start action - it can result in 'strange' error
message in kernel log like:
Process '/usr/sbin/dmsetup info -j 253 -m 17 -c --nameprefixes --noheadings --rows -o name,uuid,suspended' failed with exit code 1.
To avoid this - we need to ensure there is synchronization wait for udev
between 'resume' and 'remove' part of this process.
However existing code put strict requirement to avoid synchronizing with
udev inside critical section - but this originally came from requirement
to not do anything special while there could be devices in
suspend-state. Now we are able to see differnce between critical section
with or without suspended devices. For udev synchronization only
suspended devices are prohibited to be there - so slightly relax
condition and allow calling and using 'fs_sync()' even inside critical
section - but there must not be any suspended device.
Move DM usage into dev_manager.c source file.
Also convert STATUS to INFO ioctl - as that's enough
to obtain UUID - this also avoid issuing unwanted flush on checked DM
device for being mpath.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.
Since the parse_vdo_pool_status() become vdo_manip API part,
and there will be no 'dm' matching status parser,
the API can be simplified and closely match thin API here.
There's a small window during creation of a new RaidLV when
rmeta SubLVs are made visible to wipe them in order to prevent
erroneous discovery of stale RAID metadata. In case a crash
prevents the SubLVs from being committed hidden after such
wiping, the RaidLV can still be activated with the SubLVs visible.
During deactivation though, a deadlock occurs because the visible
SubLVs are deactivated before the RaidLV.
The patch adds _check_raid_sublvs to the raid validation in merge.c,
an activation check to activate.c (paranoid, because the merge.c check
will prevent activation in case of visible SubLVs) and shares the
existing wiping function _clear_lvs in raid_manip.c moved to lv_manip.c
and renamed to activate_and_wipe_lvlist to remove code duplication.
Whilst on it, introduce activate_and_wipe_lv to share with
(lvconvert|lvchange).c.
Resolves: rhbz1633167
Commit 813347cf84 added extra validation,
however in this particular we do want to trim suffix out so rather ignore
resulting error code here intentionaly.
If a single, standard LV is specified as the cache, use
it directly instead of converting it into a cache-pool
object with two separate LVs (for data and metadata).
With a single LV as the cache, lvm will use blocks at the
beginning for metadata, and the rest for data. Separate
dm linear devices are set up to point at the metadata and
data areas of the LV. These dm devs are given to the
dm-cache target to use.
The single LV cache cannot be resized without recreating it.
If the --poolmetadata option is used to specify an LV for
metadata, then a cache pool will be created (with separate
LVs for data and metadata.)
Usage:
$ lvcreate -n main -L 128M vg /dev/loop0
$ lvcreate -n fast -L 64M vg /dev/loop1
$ lvs -a vg
LV VG Attr LSize Type Devices
main vg -wi-a----- 128.00m linear /dev/loop0(0)
fast vg -wi-a----- 64.00m linear /dev/loop1(0)
$ lvconvert --type cache --cachepool fast vg/main
$ lvs -a vg
LV VG Attr LSize Origin Pool Type Devices
[fast] vg Cwi---C--- 64.00m linear /dev/loop1(0)
main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0)
[main_corig] vg owi---C--- 128.00m linear /dev/loop0(0)
$ lvchange -ay vg/main
$ dmsetup ls
vg-fast_cdata (253:4)
vg-fast_cmeta (253:5)
vg-main_corig (253:6)
vg-main (253:24)
vg-fast (253:3)
$ dmsetup table
vg-fast_cdata: 0 98304 linear 253:3 32768
vg-fast_cmeta: 0 32768 linear 253:3 0
vg-main_corig: 0 262144 linear 7:0 2048
vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0
vg-fast: 0 131072 linear 7:1 2048
$ lvchange -an vg/min
$ lvconvert --splitcache vg/main
$ lvs -a vg
LV VG Attr LSize Type Devices
fast vg -wi------- 64.00m linear /dev/loop1(0)
main vg -wi------- 128.00m linear /dev/loop0(0)
devices/scan_lvs (default 1) determines whether lvm
will scan LVs for layered PVs. The lvm behavior has
always been to scan LVs, but it's rare for LVs to have
layered PVs, and much more common for there to be many
LVs that substantially slow down scanning with no benefit.
This is implemented in the usable filter, and has the
same effect as listing all LVs in the global_filter.
With improved mirror activation code --splitmirror issue poppedup
since there was missing proper preload code and deactivation
for splitted mirror leg.
If a mirror LV is listed in read_only_volume_list, it would
still be activated rw. The activation would initially be
readonly, but the monitoring function would immediately
change it to rw. This was a regression from commit
fade45b1d1 mirror: improve table update
The monitoring function needs to copy the read_only setting
into the new set of mirror activation options it uses.
To support autoloading of VDO dm target driver loading of 'kvdo'
kernel module is needed - ATM it's not using 'dm-vdo' name.
So to support this strange name - add temporarily solution to
autoload kvdo kernel module in this case.
When pvmoving LV - the target for LV is a mirror so the validation
that checked the type is matching was incorrect.
While we need a more generic enhancment of LVS output for pvmoved LVs,
for now at least stop showing internal errors and 'X' symbols in attrs.
Basic LV functions:
activate_lv(), deactivate_lv(),
suspend_lv(), resume_lv()
were routed through the locking infrastruture on the way to:
lv_activate_with_filter(), lv_deactivate(),
lv_suspend_if_active(), lv_resume_if_active()
This commit removes the locking infrastructure from the
middle and calls the later functions directly from the former.
There were a couple of ancillary steps that the locking
infrastructure added along the way which are still included:
- critical section inc/dec during suspend/resume
- checking for active component LVs during activate
The "activation" file lock (serializing activation) has not
been kept because activation commands have been changed to
take the VG file lock exclusively which makes the activation
lock unused and unnecessary.
Different flavors of activate_lv() and lv_is_active()
which are meaningful in a clustered VG can be eliminated
and replaced with whatever that flavor already falls back
to in a local VG.
e.g. lv_is_active_exclusive_locally() is distinct from
lv_is_active() in a clustered VG, but in a local VG they
are equivalent. So, all instances of the variant are
replaced with the basic local equivalent.
For local VGs, the same behavior remains as before.
For shared VGs, lvmlockd was written with the explicit
requirement of local behavior from these functions
(lvmlockd requires locking_type 1), so the behavior
in shared VGs also remains the same.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
To avoid the chance of freeing a saved vg while another
code path is using it, defer freeing saved vgs until
all the lvmcache content is dropped for the vg.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
Shift refresh of mirror table right into monitor_dev_for_events().
Use !vg_write_lock_held() to recognize use of lvchange/vgchange.
(this shall change if this would no longer work, but requires
futher some API changes).
With this patch dm mirror table is only refreshed when necassary.
Also update WARNING message about mirror usage without monitoring
and display LV name.
In some pvmove tests, clvmd uses the new (precommitted)
saved_vg, but then requests the old saved_vg, and
expects that the new saved_vg be returned instead of
the old. So, when returning the new saved_vg, forget
the old one so we don't return it again.
After reading a VG, stash it in lvmcache as "saved_vg".
Before reading the VG again, try to use the saved_vg.
The saved_vg is dropped on VG lock operations.
The copy of the VG which clvmd stashes in lvmcache should
not only be used between suspend and resume, but between
sequential LV operations in clvmd, so that clvmd does not
need to reread the VG for each one. Prepare for that by
renaming the stashed VG as "saved_vg".
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
Whenever we make visible LV out of previously invisible one,
reload it's table - the is mandator for proper udev rule
processing as well as ensure content of dm table is correct.
TODO: this new generic rule probably make extra raid rules unnecessary.