IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A message is printed when the region_size of a RAID LV is adjusted
to allow for large (> ~1TB) LVs. The message wasn't very clear.
Hopefully, this is better.
When valgrind usage is desired by user (--enable-valgrind-pool)
skip playing/closing/reopenning with descriptors - it makes
valgridng useless.
Make sleep delay for clvmd start longer.
Use configure --enable-python_bindings to generate them.
Note that the Makefiles do not yet control the owner or permissions of
the two new files on installation.
It would be possible to activate a RAID LV exclusively in a cluster
volume group, but for now we do not allow RAID LVs to exist in a
clustered volume group at all. This has two components:
1) Do not allow RAID LVs to be created in a clustered VG
2) Do not allow changing a VG from single-machine to clustered
if there are RAID LVs present.
MD's bitmaps can handle 2^21 regions at most. The RAID code has always
used a region_size of 1024 sectors. That means the size of a RAID LV was
limited to 1TiB. (The user can adjust the region_size when creating a
RAID LV, which can affect the maximum size.) Thus, creating, extending or
converting to a RAID LV greater than 1TiB would result in a failure to
load the new device-mapper table.
Again, the size of the RAID LV is not limited by how much space is allocated
for the metadata area, but by the limitations of the MD bitmap. Therefore,
we must adjust the 'region_size' to ensure that the number of regions does
not exceed the limit. I've added code to do this when extending a RAID LV
(which covers 'create' and 'extend' operations) and when up-converting -
specifically from linear to RAID1.
We were using daemon_send_simple until now, but it is no longer adequate, since
we need to manipulate requests in a generic way (adding a validity token to each
request), and the tree-based request interface is much more suitable for this.
- move common dm_config_tree manipulation functions from lvmetad-core to
daemon-shared
- add config-tree-based request manipulation APIs to daemon-client
- factor out _v (va_list) variants of most variadic functions in libdaemon
Don't try to issue discards to a missing PV to avoid segfault.
Prevent lvremove from removing LVs that have any part missing.
https://bugzilla.redhat.com/857554
Failing to clear the LV_NOTSYNCED flag when converting a RAID1 LV to
linear can result in the flag being present after an upconvert - even
if the sync is performed when upconverting.
Mirrors do not allow upconverting if the LV has been created with --nosync.
We will enforce the same rule for RAID1. It isn't hugely critical, since
the portions that have been written will be copied over to the new device
identically from either of the existing images. However, the unwritten
sections may be different, causing the added image to be a hybrid of the
existing images.
Also, we are disallowing the addition of new images to a RAID1 LV that has
not completed the initial sync. This may be different from mirroring, but
that is due to the fact that the 'mirror' segment type "stacks" when adding
a new image and RAID1 does not. RAID1 will rebuild a newly added image
"inline" from the existant images, so they should be in-sync.
We cannot add images to a RAID array while it is not in-sync. The
kernel will simply reject the table, saying:
'rebuild' specified while array is not in-sync
Now we check to ensure the LV is in-sync before attempting image
additions.
It is necessary when creating a RAID LV to clear the new metadata areas.
Failure to do so could result in a prepopulated bitmap that would cause
the new array to skip syncing portions of the array. It is a requirement
that the metadata LVs be activated and cleared in the process of creating.
However in test mode, this requirement should be lifted - no new LVs should
be created or written to.
When printing a message for the user and the lv_segment pointer is available,
use segtype->ops->name() instead of segtype->name. This gives a better
user-readable name for the segment. This is especially true for the
'striped' segment type, which prints "linear" if there is an area_count of
one.
We should check whether the fd is opened before trying to reopen it.
For example, the stdin is closed in test/lib/harness.c causing the
test suite to fail.