IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A foreign VG should be silently ignored by a reporting/display
command like 'vgs'. If the reporting/display command specifies
a foreign VG by name on the command line, it should produce an
error message.
Scanning commands pvscan/vgscan/lvscan are always allowed to
read and update caches from all PVs, including those that belong
to foreign VGs.
Other non-report/display/scan commands always ignore a foreign
VG, or report an error if they attempt to use a foreign VG.
vgimport should always invalidate the lvmetad cache because
lvmetad likely holds a pre-vgexported copy of the VG.
(This is unrelated to using foreign VGs; the pre-vgexported
VG may have had no system_id at all.)
Add --foreign to the remaining reporting and display commands plus
vgcfgbackup.
Add a NEEDS_FOREIGN_VGS flag for vgimport to always set --foreign.
If lvmetad is being used with --foreign, scan foreign VGs (currently
implemented as a full PV scan).
Handle these things centrally in lvmcmdline.c.
Also allow lvchange and vgchange -an/-aln to deactivate any foreign
LVs that happen to be active if something went wrong.
Remember to set the system ID when creating a new VG in vgsplit.
Invalid devices no longer included in the counters printed at the end.
May now need to use --ignoreskippedcluster if relying upon exit status.
If more than one change is requested per-PV, attempt to perform them
all. Note that different arguments still handle exit status
differently.
We already allowed -S|--select with {vg,lv,pv}display -C (which
was then equal to {vg,lv,pv}s command. Since we support selection
in toolib now, we can support -S also without using -C in *display
commands now.
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
The {pv,vg,lv}display *do* use reporting in case "-C|--columns" is used.
The man page was correct, the recognition for the --binary was missing
in the code though!
Introduce new option to specify pool data size.
This will be user to create i.e. cache & cachepool at once.
And possible for thin external origin snapshot.
This is only very basic patch to enable options, the
real working code will come later.
--splitcache
Splits only cached LV (also pool could be specified).
Detaches cachepool from cached LV.
--split
Should be univerzal command to split various complex targets.
At this moment it knows cache.
--uncache
Opposite command to --cache. Detaches and DELETES cachepool for
cached LV.
Note: we support thin pool cached metadata device for uncaching.
Also use may specify wither cached LV or association cachepool device
to request split of cache.
The ENABLE_ALL_DEVS flag is added to the command structure
for commands that should process all devs (pvs and non-pvs)
when they call process_each_pv and the command includes the
--all arg. This will be used in a later process_each_pv patch.
The ALL_VGS_IS_DEFAULT flag is added to the command structure
for commands that should process all vgs when they call
process_each_vg or process_each_lv with no args.
This will be used in later patches to process_each functions.
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
The --binary option, if used, causes all the binary values reported
in reporting commands to be displayed as "0" or "1" instead of descriptive
literal values (value "unknown" is still used for values that could not be
determined).
Also, add report/binary_values_as_numeric lvm.conf option with the same
functionality as the --binary option (the --binary option prevails
if both --binary cmd option and report/binary_values_as_numeric lvm.conf
option is used at the same time). The report/binary_values_as_numeric is
also profilable.
This makes it easier to use and check lvm reporting command output in scripts.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
The dumpconfig now understands --commandprofile/--profile/--metadataprofile
The --commandprofile and --profile functionality is almost the same
with only one difference and that is that the --profile is just used
for dumping the content, it's not applied for the command itself
(while the --commandprofile profile is applied like it is done for
any other LVM command).
We also allow --metadataprofile for dumpconfig - dumpconfig *does not*
touch VG/LV and metadata in any way so it's OK to use it here (just for
dumping the content, checking the profile validity etc.).
The validity of the profile can be checked with:
dumpconfig --commandprofile/--profile/--metadataprofile --validate
...depending on the profile type.
Also, mention --config in the dumpconfig help string so users know
that dumpconfig handles this too (it did even before, but it was not
documented in the help string).
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
Users now have the ability to convert their existing logical volumes
into cached logical volumes. A cache pool LV must be specified using
the '--cachepool' argument. The cachepool is the small, fast LV used
to cache the large, slow LV that is being converted.
This patch allows users to convert existing logical volumes into
cache pool LVs. Since cache pool LVs consist of data and metadata
sub-LVs, there is also the '--poolmetadata' (similar to thin_pool)
which allows for the specification of the metadata device.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
Accept --ignoreskippedcluster with pvs, vgs, lvs, pvdisplay, vgdisplay,
lvdisplay, vgchange and lvchange to avoid the 'Skipping clustered
VG' errors when requesting information about a clustered VG
without using clustered locking and still exit with success.
The messages can still be seen with -v.
Add internal devtypes reporting command to display built-in recognised
block device types. (The output does not include any additional
types added by a configuration file.)
> lvm devtypes -o help
Device Types Fields
-------------------
devtype_all - All fields in this section.
devtype_name - Name of Device Type exactly as it appears in /proc/devices.
devtype_max_partitions - Maximum number of partitions. (How many device minor numbers get reserved for each device.)
devtype_description - Description of Device Type.
> lvm devtypes
DevType MaxParts Description
aoe 16 ATA over Ethernet
ataraid 16 ATA Raid
bcache 1 bcache block device cache
blkext 1 Extended device partitions
...