IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Use of lv_info() internally in lv_check_not_in_use(),
so it always could use with_open_count properly.
Skip sysfs() testing in open_count == 0 case.
Accept just 'lv' pointer like other functions.
The function has 'built-in' lv_is_active_locally check,
which however is not what we need to check in many place.
For now at least remotely active snapshot merge is
detected and for this case merge on next activation is scheduled.
Try to enforce consistent macro usage along these lines:
lv_is_mirror - mirror that uses the original dm-raid1 implementation
(segment type "mirror")
lv_is_mirror_type - also includes internal mirror image and log LVs
lv_is_raid - raid volume that uses the new dm-raid implementation
(segment type "raid")
lv_is_raid_type - also includes internal raid image / log / metadata LVs
lv_is_mirrored - LV is mirrored using either kernel implementation
(excludes non-mirror modes like raid5 etc.)
lv_is_pvmove - internal pvmove volume
Use lv_is_* macros throughout the code base, introducing
lv_is_pvmove, lv_is_locked, lv_is_converting and lv_is_merging.
lv_is_mirror_type no longer includes pvmove.
2.02.106 added suffixes to some LV uuids in the kernel.
If any of these LVs is activated with 2.02.105 or earlier,
and then a later version is used, the LVs appear invisible and
activation commands fail.
The code now has to check the kernel for both old and new uuids.
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
Enable 'retry' deactivation also in 'cleanup' phase.
It shouldn't be mostly needed - however udev now produces
more and more completelny non-synchronizable device opens,
so even for orphan devices we can't easily predict where
udevd opens devices.
So it's more preferable here to log error about device being open
and retry clean, but let the command proceed.
Accidently it's been commited - but it has also shown,
that on heavy loaded systems (like our test machine could be)
slightly bigger timeouts which waits longer for udev rules
processing does help and avoids occasional refuse of deactivation
because device is still being open.
(i.e. lvcreate...; lvchange -an...)
Unsure how we could now synchronize for this. On very slow(/loaded)
system 5 second timeout is simply not enough.
TODO: introduce at least lvm.conf configurable setting to
allow longer 'retry' loops.
Reindent lv_check_not_in_use to simplify internal loop code.
Also return always '0/1' (drop -1) - since we only
check for failure (0) - and we don't really know
why lv_info() has failed.
Disable code which has postprocessed whole tree and reset udev flags.
We need to find out which case was troublesome - since this loop
was just hidding bug in other code parts (most probably preload tree)
In general for non-toplevel LVs we shouldn't allow any _tree_action.
For now error on request for cache_pool activation which
doesn't even exist in dm-table.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.
This function is typically called for cmd context refresh or destroy.
On the non-clustered case we already unlocked all messages,
however when i.e. 'clvmd' gets break signal it may have
still couple messages queued.
For now just report an error.
Reorder detection for internal device - since this test
is much simpler then target analysis, check it sooner.
Replace test for '68' with sizeof & ID_LEN
Add FIXME about device alias problem with is_reserved_lvname,
since this test fails on devices like /dev/dm-X
so we need to convert tests to UUID.
Even though we make pool volume as a public visible LV,
we still do not want tools to look at this volume.
While we do not create /dev/vg/lv link, device is still
accessible via /dev/mapper/vg-lv and there is no easy
way to recognize it's private without lvm2 metadata.
Enhance UUID with -pool suffix and directly skip
any LV with a suffix in device_is_usable() call.
TODO: enhance other targets with this logic.
blkid may probably use same simple logic.
The empty pool is also the pool which has yet queued list of messages
and transaction_id == 1.
Problem is exposed when pool is created inactive.
lvcreate -L10 -T vg/pool -an
lvcreate -V10 -T vg/pool
Move flags for segments to segtype header where it seems more closely
related as the features are related to segtype and not activation.
Use unsigned #define - since it's more common in lvm2 source code
for bit flags.
Code uses target driver version for better estimation of
max size of COW device for snapshot.
The bug can be tested with this script:
VG=vg1
lvremove -f $VG/origin
set -e
lvcreate -L 2143289344b -n origin $VG
lvcreate -n snap -c 8k -L 2304M -s $VG/origin
dd if=/dev/zero of=/dev/$VG/snap bs=1M count=2044 oflag=direct
The bug happens when these two conditions are met
* origin size is divisible by (chunk_size/16) - so that the last
metadata area is filled completely
* the miscalculated snapshot metadata size is divisible by extent size -
so that there is no padding to extent boundary which would otherwise
save us
Signed-off-by:Mikulas Patocka <mpatocka@redhat.com>
Test raid10 availability as a target feature (instead of doing
it in all the places where raid10 should be checked).
TODO: activation needs runtime validation - so metadata with raid10
are skipped from activation in user-friendly way in lvm2.
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
Building on the new DM function that parses DM cache status, we
introduce the following LVM level functions to aquire information
about cache devices:
- lv_cache_block_info: retrieves information on the cache's block/chunk usage
- lv_cache_policy_info: retrieves information on the cache's policy
When thin volume is using external origin, current thin target
is not able to supply 'extended' size with empty pages.
lvm2 detects version and disables extension of LV past the external
origin size in this case.
Thin LV could be however still reduced and extended freely bellow
this size.
This reverts commit 24639be558.
Ok - seems we could be here a bit too active - and we
may remove devices which are unsuable for reasons we are not
aware of - thus taking down whole device could be way to big hammer.
So we still need some solution to recover from failing preload
and activation - but it needs more tunning.
When activation fails - we may leak large tree of partially loaded
devices in the dm table (i.e. failure in snapshot activation)
The best we can do here is try to deactivate whole device and
remove as much inactive table entries as we can.