IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Fix regression caused by c9f021de0b.
This commit actually transfered real-action (e.g. device removal)
into the next loop which has however missed to check for break.
So add check for break also there.
When creating a list in 'context of command' - use proper mempool.
vg->vgmem is mempool related to VG metadata - and can be eventually
locked read-only when VG struct is shared.
The extent size must fits all blocks in 4294967295 sectors
(in 512b units) this is 1/2 KiB less then 2TiB.
So while previous statement 'suggested' 2TiB is still acceptable value,
make it clear it's not.
As now we support any multiples of 128KB as extent size -
values like 2047G will still 'flow-in' otherwise the largest power-of-2
supported value is 1TiB.
With 1TiB user needs 8388608 extents for 8EiB device.
(FYI such device is already unusable with todays glibc-2.22.90-27)
4GiB extent size is currently the smallest extent size which allows
a user to create 8EiB devices (with 2GiB it's less then 8EiB).
TODO: lvm2 may possibly print amount of 'lost/unused space' on a PV,
since using such ridiculously sized extent size may result in huge
space being left unaccessible.
Add a comment in _process_pvs_in_vg() to document the
place where there have been problems with processing
PVs twice.
For a while we had a hacky workaround here where we'd
skip processing a PV if its device wasn't found in
all_devices (and !is_missing_pv since we want to
process PVs with missing devices.). That workaround
was removed in commit 5cd4d46f because it was no
longer needed.
The workaround had originally been needed to prevent
a device from being processed twice when the PV had
no MDAs -- it would be processed once in its real VG
and then the workaround would prevent it from being
processed a second time in the orphan VG.
Wrongly appearing as an orphan likely happened because
lvmcache would consider the no-MDA PV an orphan unless
the real VG holding that PV was also in lvmcache.
This issue is also mentioned in pvchange where holding
the global lock allows VGs to remain in lvmcache so
PVs with 0 mdas are not considered orphans.
The workaround in _process_pvs_in_vg() was originally
intended for reporting commands, not for pvchange.
But, it was accidentally helping pvchange also because
the method described by the pvchange global lock
comment had been subverted by commit 80f4b4b8.
Commit 80f4b4b8 was found to be unnecessary, and was
reverted in commit e710bac0. This restored the
intended global lock lvmcache effect to pvchange, and
it no longer relied on the workaround in toollib.
The problem addressed by this workaround no longer
seems to exist, so remove it. PVs with no mdas
no longer appear in both their actual VG and in
the orphan VG.
Use process_each_vg() to lock and read the old VG,
and then call the main vgrename code.
When real VG names are used (not a UUID in place of the
old name), the command still pre-locks the new name
(when strcmp wants it locked first), before calling
process_each_vg on the old name.
In the case where the old name is replaced with a UUID,
process_each_vg now translates that UUID into the real
VG name, which it locks and reads. In this case, we
cannot do pre-locking to maintain lock ordering because
the old name is unknown. So, in this case the strcmp
based lock ordering is suppressed and the old name is
always locked first. This opens a remote chance for
lock ordering conflict between racing vgrenames between
two names where one or both commands use the UUID.
Also always clear the internal lvmcache after rescanning, and
reinstate a test for --trustcache so that 'pvs --trustcache'
(for example) avoids rescanning.
Before commit c1f246fedf,
_get_all_devices() did a full device scan before
get_vgnameids() was called. The full scan in
_get_all_devices() is from calling dev_iter_create(f, 1).
The '1' arg forces a full scan.
By doing a full scan in _get_all_devices(), new devices
were added to dev-cache before get_vgnameids() began
scanning labels. So, labels would be read from new devices.
(e.g. by the first 'pvs' command after the new device appeared.)
After that commit, _get_all_devices() was called
after get_vgnameids() was finished scanning labels.
So, new devices would be missed while scanning labels.
When _get_all_devices() saw the new devices (after
labels were scanned), those devices were added to
the .cache file. This meant that the second 'pvs'
command would see the devices because they would be
in .cache.
Now, the full device scan is factored out of
_get_all_devices() and called by itself at the
start of the command so that new devices will
be known before get_vgnameids() scans labels.
In general, --select should be used to specify a VG by UUID,
but vgrename already allows a uuid to be substituted for
the name, so continue to allow it in that case.
If the VG arg from the command line does not match the
name of any known VGs, then check if the arg looks like
a UUID. If it's a valid UUID, then compare it to the
UUID of known VGs. If it matches the UUID of a known VG,
then process that VG.
Pass the single vgname as a new process_each_vg arg
instead of setting a cmd flag to tell process_each_vg
to take only the first vgname arg from argv.
Other commands with different argv formats will be
able to use it this way.
If two different VGs with the same name exist on the system,
a command that just specifies that ambiguous name will fail
with a new error:
$ vgs -o name,uuid
...
foo qyUS65-vn32-TuKs-a8yF-wfeQ-7DkF-Fds0uf
foo vfhKCP-mpc7-KLLL-Uh08-4xPG-zLNR-4cnxJX
$ lvs foo
Multiple VGs found with the same name: foo
Use the --select option with VG UUID (vg_uuid).
$ vgremove foo
Multiple VGs found with the same name: foo
Use the --select option with VG UUID (vg_uuid).
$ lvs -S vg_uuid=qyUS65-vn32-TuKs-a8yF-wfeQ-7DkF-Fds0uf
lv1 foo ...
This is implemented for process_each_vg/lv, and works
with or without lvmetad. It does not work for commands
that do not use process_each.
This change includes one exception to the behavior shown
above. If one of the VGs is foreign, and the other is not,
then the command assumes that the intended VG is the local
one and uses it.
This makes process_each_vg/lv always use the list of
vgnames on the system. When specific VGs are named on
the command line, the corresponding entries from
vgnameids_on_system are moved to vgnameids_to_process.
Previously, when specific VGs were named on the command
line, the vgnameids_on_system list was not created, and
vgnameids_to_process was created from the arg_vgnames
list (which is only names, without vgids).
Now, vgnameids_on_system is always created, and entries
are moved from that list to vgnameids_to_process -- either
some (when arg_vgnames specifies only some), or all (when
the command is processing all VGs, or needs to look at
all VGs for checking tags/selection).
This change adds one new lvmetad lookup (vg_list) to a
command that specifies VG names. It adds no new work
for other commands, e.g. non-lvmetad commands, or
commands that look at all VGs.
When using lvmetad, 'lvs foo' previously sent one
request to lvmetad: 'vg_lookup foo'.
Now, 'lvs foo' sends two requests to lvmetad:
'vg_list' and 'vg_lookup foo <uuid>'.
(The lookup can now always include the uuid in the request
because the initial vg_list contains name/vgid pairs.)
The recent addition to check for PVs that were
missed during the first iteration of processing
was unintentionally catching duplicate PVs because
duplicates were not removed from the all_devices
list when the primary dev was processed.
Also change a message from warn back to verbose.
If a VG is removed between the time that 'vgs'
or 'lvs' (with no args) creates the list of VGs
and the time that it reads the VG to process it,
then ignore the removed VG; don't report an error
that it could not be found, since it wasn't named
by the command.
PVs could be missing from the 'pvs' output if
their VG was removed at the same time that the
'pvs' command was run. To fix this:
1. If a VG is not found when processed, don't
silently skip the PVs in it, as is done when
the "skip" variable is set.
2. Repeat the VG search if some PVs are not
found on the first search through all VGs.
The second search uses a specific list of
PVs that were missed the first time.
testing:
/dev/sdb is a PV
/dev/sdd is a PV
/dev/sdg is not a PV
each test begins with:
vgcreate test /dev/sdb /dev/sdd
variations to test:
vgremove -f test & pvs
vgremove -f test & pvs -a
vgremove -f test & pvs /dev/sdb /dev/sdd
vgremove -f test & pvs /dev/sdg
vgremove -f test & pvs /dev/sdb /dev/sdg
The pvs command should always display /dev/sdb
and /dev/sdd, either as a part of VG test or not.
The pvs command should always print an error
indicating that /dev/sdg could not be found.
Commit 1a74171ca5 added
a check to ignore a VG that was FAILED_INCONSISTENT
if the command doesn't care if the VG is not found.
Remove that check because that case is never reached
by the current code.
The ONE_VGNAME_ARG was being passed and tested as
vg_read() flag but it's a cmd struct flag.
(It affects command arg processing in toollib,
not vg_read behavior. Flags related to command
processing are generally cmd struct flags, while
vg_read arg flags are generally related to vg_read
behavior.)
Running "vgremove -f VG & pvs" results in the pvs
command reporting that the VG is not found or is
inconsistent. If the VG is gone or being removed,
the pvs command should just skip it and not print
errors about it.
"Not found" is because the pvs command created the
list of VGs to process, including VG, then vgremove
removed the VG, then the pvs command came to to read
the VG to process it and did not find it.
An "inconsistent" error could be reported if vgremove
had only partially completed removing VG when pvs did
vg_read on the VG to process it, causing pvs to find
the VG in a partially-removed state.
This fix adds a flag that pvs uses to ignore a VG
that can't be read or is inconsistent.
If 'vgcreate --shared' finds both sanlock and dlm are running,
print a more accurate error message:
"Found multiple lock managers, select one with --lock-type."
When neither is running, we still print:
"Failed to detect a running lock manager to select lock type."
Using --lock-type sanlock|dlm implies --shared.
Using --shared selects lock type sanlock|dlm
(by choosing the one that's running.)
Using both --shared and --lock-type sanlock|dlm should
also be allowed (--shared is just redundant information.)
The unlock call will fail in expected and normal cases,
and should not cause the command to fail. (An actual
unlock in the lock manager should never fail.)
Add new profilable configurables:
allocation/cache_policy
allocation/cache_settings
and mark allocation/cache_pool_chunk_size as profilable as well.
Obsolete allocation/cache_pool_cachemode and
introduce new allocation/cache_mode instead.
Rename DEFAULT_CACHE_POOL_POLICY to DEFAULT_CACHE_POLICY.
When lvm is built without lvmlockd support, vgcreate using a
shared lock type would succeed and create a local VG (the
--shared option was effectively ignored). Make it fail.
Fix the same issue when using vgchange to change a VG to a
shared lock type.
Make the error messages consistent.
Keep policy name separate from policy settings and avoid
to mangling and demangling this string from same config tree.
Ensure policy_name is always defined.
There are two different failure conditions detected in
access_vg_lock_type() that should have different error
messages. This adds another failure flag so the two
cases can be distinguished to avoid printing a misleading
error message.
This prevents 'lvremove vgname' from attempting to remove the
hidden sanlock LV. Only vgremove should remove the hidden
sanlock LV holding the sanlock locks.
... Using uninitialized value "lockd_state" when calling "lockd_vg"
(even though lockd_vg assigns 0 to the lockd_state, but it looks at
previous state of lockd_state just before that so we need to have
that properly initialized!)
libdm/libdm-report.c:2934: uninit_use_in_call: Using uninitialized value "tm". Field "tm.tm_gmtoff" is uninitialized when calling "_get_final_time".
daemons/lvmlockd/lvmlockctl.c:273: uninit_use_in_call: Using uninitialized element of array "r_name" when calling "format_info_r_action". (just added FIXME as this looks unfinished?)
In process_each_{vg,lv,pv} when no vgname args are given,
the first step is to get a list of all vgid/vgname on the
system. This is exactly what lvmetad returns from a
vg_list request. The current code is doing a vg_lookup
on each VG after the vg_list and populating lvmcache with
the info for each VG. These preliminary vg_lookup's are
unnecessary, because they will be done again when the
processing functions call vg_read. This patch eliminates
the initial round of vg_lookup's, which can roughly cut in
half the number of lvmetad requests and save a lot of extra work.
Routines responsible for polling of in-progress pvmove, snapshot merge
or mirror conversion each used custom lookup functions to find vg and
lv involved in polling.
Especially pvmove used pvname to lookup pvmove in-progress. The future
lvmpolld will poll each operation by vg/lv name (internally by lvid).
Also there're plans to make pvmove able to move non-overlaping ranges
of extents instead of single PVs as of now. This would also require
to identify the opertion in different manner.
The poll_operation_id structure together with daemon_parms structure they
identify unambiguously the polling task.
With use_lvmetad=0, duplicate PVs /dev/loop0 and /dev/loop1,
where in this example, /dev/loop1 is the cached device
referenced by pv->dev, the command 'pvs /dev/loop0' reports:
Failed to find physical volume "/dev/loop0".
This is because the duplicate PV detection by pvid is
not working because _get_all_devices() is not setting
any dev->pvid for any entries. This is because the
pvid information has not yet been saved in lvmcache.
This is fixed by calling _get_vgnameids_on_system()
before _get_all_devices(), which has the effect of
caching the necessary pvid information.
With this fix, running pvs /dev/loop0, or pvs /dev/loop1,
produces no error and one line of output for the PV (the
device printed is the one cached in pv->dev, in this
example /dev/loop1.)
Running 'pvs /dev/loop0 /dev/loop1' produces no error
and two lines of output, with each device displayed
on one of the lines.
Running 'pvs -a' shows two PVs, one with loop0 and one
with loop1, and both shown as a member of the same VG.
Running 'pvs' shows only one of the duplicate PVs,
and that shows the device cached in pv->dev (loop1).
The above output is what the duplicate handling code
was previously designed to output in commits:
b64da4d8b5 toollib: search for duplicate PVs only when needed
3a7c47af0e toollib: pvs -a should display VG name for each duplicate PV
57d74a45a0 toollib: override the PV device with duplicates
c1f246fedf toollib: handle duplicate pvs in process_in_pv
As a further step after this, we may choose to change
some of those.
For all of these commands, a warning is printed about
the existence of the duplicate PVs:
Found duplicate PV ...: using /dev/loop1 not /dev/loop0
sharing connection between parent command and background
processes spawned from parent could lead to occasional failures
due to unexpected corruption in daemon responses sent to either child
or a parent.
lvmetad issued warning about duplicate config values in request.
LVM commands occasionaly failed w/ internal error after receving
corrupted response.
lvmetad connection is renewed when needed after explicit disconnect
in child
spawning a background polling from within the lv_change_activate
fn went to two problems:
1) vgchange should not spawn any background polling until after
the whole activation process for a VG is finished. Otherwise
it could lead to a duplicite request for spawning background
polling. This statement was alredy true with one exception of
mirror up-conversion polling (fixed by this commit).
2) due to current conditions in lv_change_activate lvchange cmd
couldn't start background polling for pvmove LVs if such LV was
about to get activated by the command in the same time.
This commit however doesn't alter the lvchange cmd so that it works same as
vgchange with regard to not to spawn duplicate background pollings per
unique LV.
Do not keep dangling LVs if they're removed from the vg->lvs list and
move them to vg->removed_lvs instead (this is actually similar to already
existing vg->removed_pvs list, just it's for LVs now).
Once we have this vg->removed_lvs list indexed so it's possible to
do lookups for LVs quickly, we can remove the LV_REMOVED flag as
that one won't be needed anymore - instead of checking the flag,
we can directly check the vg->removed_lvs list if the LV is present
there or not and to say if the LV is removed or not then. For now,
we don't have this index, but it may be implemented in the future.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).