IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The option can be used in multiple ways (like --cachesettings):
--integritysettings key=val
--integritysettings 'key1=val1 key2=val2'
--integritysettings key1=val1 --integritysettings key2=val2
Use with lvcreate or lvconvert when integrity is first enabled
to configure:
journal_sectors
journal_watermark
commit_time
bitmap_flush_interval
allow_discards
Use with lvchange to configure (only while inactive):
journal_watermark
commit_time
bitmap_flush_interval
allow_discards
lvchange --integritysettings "" clears any previously configured
settings, so dm-integrity will use its own defaults.
lvs -a -o integritysettings displays configured settings.
Convert test to use only ext4 instead of 300M demanding XFS.
Shorten 'B' files to 4K and use 4K strip size with >raid1 arrays
so we do not risk spreading of the file across stripe.
Also use easier 'aux corrupt_dev()' method to introduce a bit
corruption into a block device with integrity.
TODO: shorten _wait_recalc (should't be needed).
Verify that corruption is corrected for raid levels other
than raid1. For other raid levels, attempt to corrupt the
given file pattern on each underlying device, since we don't
know which device contains the file being corrupted.
This ensures that corruption is actually be introduced
when testing the other raid levels.
Verify that corruption is being corrected by checking
the integritymismatches count is non-zero for the raid LV,
which includes the total from all images (since we don't
know which image will have the corruption.)
If the test runs of loop device backend with 512 sectors,
xfs selects this smaller sector size and then data do not fit
(we would need -l9 with most of 'raids').
With 4K sectors data always fits.
The test was using a raid+integrity LV without
first waiting for the integrity sync, which could
cause the test to fail (depending on init speed)
where it depends on integrity to work in uninitialized
areas.
Also use cmp instead of diff.
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m