IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When mirror has missing PVs and there are mirror images on those missing
PVs, we delete the images and during this delete operation, we also
reactivate the LV. But if we're trying to reactivate the LV in cluster
which is not active and at the same time cmirrord is not running (which
is OK since we may have created the mirror LV as inactive), we end up
with:
"Error locking on node <node_name>: Shared cluster mirrors are not available."
That is because we're trying to activate the mirror LV without cmirrord.
However, there's no need to do this reactivation if the mirror LV (and
hence it's sub LVs) were not activated before.
This issue caused failure in mirror-vgreduce-removemissing.sh test
recently with this sequence (excerpt from the test script):
prepare_lvs_
lvcreate -an -Zn -l2 --type mirror -m1 --nosync -n $lv1 $vg "$dev1" $dev2" "$dev3":$BLOCKS
mimages_are_on_ $lv1 "$dev1" "$dev2"
mirrorlog_is_on_ $lv1 "$dev3"
aux disable_dev "$dev2"
vgreduce --removemissing --force $vg
The important thing about that test is that we're not running cmirrord,
we're activating the mirror with "-an" so it's inactive and then
vgreduce --removemissing tries to reactivate the mirror images
as part of the _delete_lv function call inside and since cmirrord
is not running, we end up with the "Shared cluster mirrors are not
available." error.
When creating cluster mirrors while they're not supposed to be activated
immediately after creation, we don't need to check for cmirrord availability.
We can just create these mirrors and let the check to be done on activation
later on. This is addendum for commit cba6186325f0d5806cf1ddec276b3bb8e178687a.
When creating/activating clustered mirrors, we should have cmirrord
available and running. If it's not, we ended up with rather cryptic
errors like:
$ lvcreate -l1 -m1 --type mirror vg
Error locking on node 1: device-mapper: reload ioctl on failed: Invalid argument
Failed to activate new LV.
$ vgchange -ay vg
Error locking on node node 1: device-mapper: reload ioctl on failed: Invalid argument
This patch adds check for cmirror availability and it errors out
properly, also giving a more precise error messge so users are able
to identify the source of the problem easily:
$ lvcreate -l1 -m1 --type mirror vg
Shared cluster mirrors are not available.
$ vgchange -ay vg
Error locking on node 1: Shared cluster mirrors are not available.
Exclusively activated cluster mirror LVs are OK even without cmirrord:
$ vgchange -aey vg
1 logical volume(s) in volume group "vg" now active
Since GET_FIELD_RESERVED_VALUE always returns a pointer, don't reference
it with "&" when used - we already have that pointer value (this is an
addendum to recent commit 028ff309472834e82fe4b849ea4c243feb5098b9).
Only GET_TYPE_RESERVED_VALUE needs to be referenced with "&" as it
returns directly the value of that type.
We have to use empty list, not NULL if we want to denote that the list
has no items. Otherwise, the code further can segfault as it expects
there's always a sane value (= some list), including empty list,
but never NULL.
Use helper macros to handle reserved values and also define "undefined"
reserved value as:
FIELD_RESERVED_VALUE(cache_policy, cache_policy_undef, "", "", "undefined")
Which means:
- print "" if the cache_policy value is undefined (the first name for this reserved value is "")
- recognize "undefined" reserved name as synonym to ""
(so statements like "lvs -S cache_policy=undefined" are still recognized)
Avoid making a copy of the keyword which is already registered in
values.h for "unmanaged" (vg_mda_copies field) and "auto" reserved
value (lv_read_ahead field). Also use helper macros to handle these
reserved - this is the correct approach - just do not copy the same
thing again and do not mix it! The GET_FIELD_RESERVED_VALUE and
GET_FIRST_RESERVED_NAME macros guarantees this - use it!
In addition to that, rename reserved values:
vg_mda_copies --> vg_mda_copies_unmanaged
lv_read_ahead --> lv_read_ahead_auto
So the field reserved values follows this scheme:
"<field_name>_<reserved_value_name>".
The same applies for type reserved values with this scheme:
"<report type name in lowercase>_<reserved_value_name>"
Add a comment about this scheme for others to follow as well
when adding new fields and their reserved values. This makes
it a bit easier to read the code then.
RESERVED(id) --> GET_TYPE_RESERVED_VALUE(id)
FIRST_NAME(id) --> GET_FIRST_RESERVED_NAME(id)
Also add GET_FIELD_RESERVED_VALUE(id) macro to get per-field reserved value.
This makes it much more readable and hopefully it'll make it
easier to use these helper macros when adding new reporting
fields with reserved values if needed.
The cache policy name taken as LV segment property must be duped
for report as the VG/LV/seg structure is destroyed after processing,
reporting happens later:
$ valgrind lvs -o+cache_policy
...
==16589== Invalid read of size 1
==16589== at 0x54ABCC3: dm_report_compact_fields
(libdm-report.c:1739)
==16589== by 0x153FC7: _report (reporter.c:619)
==16589== by 0x1540A6: lvs (reporter.c:641)
==16589== by 0x148021: lvm_run_command (lvmcmdline.c:1452)
==16589== by 0x1495CB: lvm2_main (lvmcmdline.c:1907)
==16589== by 0x164712: main (lvm.c:21)
==16589== Address 0x7d465f2 is 8,338 bytes inside a block of size
16,384 free'd
==16589== at 0x4C2ACE9: free (in
/usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==16589== by 0x54B8C85: _free_chunk (pool-fast.c:318)
==16589== by 0x54B84FB: dm_pool_destroy (pool-fast.c:78)
==16589== by 0x1E59C7: _free_vg (vg.c:78)
==16589== by 0x1E5A6D: release_vg (vg.c:95)
==16589== by 0x159B6E: _process_lv_vgnameid_list (toollib.c:1967)
==16589== by 0x159DD7: process_each_lv (toollib.c:2030)
==16589== by 0x153ED8: _report (reporter.c:598)
==16589== by 0x1540A6: lvs (reporter.c:641)
==16589== by 0x148021: lvm_run_command (lvmcmdline.c:1452)
==16589== by 0x1495CB: lvm2_main (lvmcmdline.c:1907)
==16589== by 0x164712: main (lvm.c:21)
When we split leg from raid - we take a proper new lock for a new LV.
However for now activation checks only 'existince' of device UUID,
but it's not validating device has a proper name.
As a quick fix call suspend()/resume() to rename after split mirror.
Just call return 0 directly on error path, without using
"goto" - the code is short, no need to use it this way
(the dead code appeared as part of further changes in this
function).
When chunk size needs to be estimated, the code missed to round
to proper 64kb boundaries (or power of 2 for older thin pool driver).
So for some data and metadata size (i.e. 10GB and 4MB) it resulted
in incorrect chunk size (not being a multiple of 64KB)
Fix it by adding proper rounding and also use 1 routine for 2 places
where the same calculation is made.
Fix also incorrect printed warning that has used 'ffs()'
(which returns first 'least significant' bit in word)
and it was not really giving any useful size info and replace it
with properly estimated chunk size.
Fix regression introduced with a2c1024f6ac7e22ac5c010a267d0c1df331ee416
_setup_task(mknodes ? name : NULL...
has been replaced with:
_setup_task(type != MKNODES ? name : NULL....
Use '=='
Use log_warn when we are effectively not creating an error -
we 'allowed' inconsistent read for a reason - so it's just warning
level we process inconsistent VG - it's upto caller later to decide
error level of command return value and in case of error it needs
to use log_error then.
Failed recovery provides different (NULL) VG then FAILED_INCONSISTENT.
Mark it with different failure bit - since FAILED_INCONSISTENT is
supposed to contain something 'usable' (thought inconsistent).
- Add separate lv_status fn (if we're interested only in seg status,
but not lv info at the same time as it is with existing
lv_info_with_seg_status fn). So we 3 fns:
- lv_info (existing one, runs only info ioctl, fills in struct lvinfo only)
- lv_status (new one, runs status ioctl, fills in struct lv_seg_status only)
- lv_info_with_seg_status (existing one, runs status ioctl, fills
in struct lvinfo as well as lv_seg_status)
- Add more comments in the code explaining the difference between lv_info,
lv_status and lv_info_with_seg_status and their return values.
- Move decision whether lv_info_with_seg_status needs to call only
status ioctl (in case the segment for which we require status is from
the LV for which we require info) or separate status and info ioctl
(in case the segment for which we require status is from different
LV that the one for which we require info) into
lv_info_with_seg_status fn so caller doesn't need to bother about
this at all.
- Cleanup internal interface for this seg status so it's more readable.
Since we support device stack of pools over pool
(thin-pool with cache data volume) the existing code
is no longer able to detect orphan _pmspare.
So instead do a _pmspare check after volume removal,
and remove spare afterwards.
We need to stop guessing deleted names - so rather collect
deleted UUID into a string list - and then remove them properly
in _clean_tree. Restore origin _clean_tree behaviour them for
currently unconverted removal of snapshots.
Pending delete feature now properly tracks whole subtree of cache
(so i.e. data or metadata as raid volumes).
It properly replaces all related volumes with 'errors' in suspend
preload, then resume them as error and remove collected UUIDs
from root - since they are not longer part of any volume deps.
This would be in case the pool segment was not found.
LVM2.2.02.112/lib/metadata/pool_manip.c:238:36: warning: Access to field 'segtype' results in a dereference of a null pointer (loaded from variable 'pool_seg')
LVM2.2.02.112/lib/metadata/cache_manip.c:73: overflow_before_widen: Potentially overflowing expression "*pool_metadata_extents *vg->extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
LVM2.2.02.112/lib/activate/dev_manager.c:217: overflow_before_widen: Potentially overflowing expression "seg_status->seg->len * extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
LVM2.2.02.112/lib/activate/dev_manager.c:217: overflow_before_widen: Potentially overflowing expression "seg_status->seg->le * extent_size" with type "unsigned int" (32 bits, unsigned) is evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type "uint64_t" (64 bits, unsigned).
LVM2.2.02.112/lib/activate/dev_manager.c:196:5: warning: 'dmtask' may be used uninitialized in this function [-Wmaybe-uninitialized]
In _info_run fn:
switch (type) {
case INFO:
...
case STATUS:
...
case MKNODES:
...
}
The "type" is enum and currently only those three types are supported,
but if we added a new type in the future, this would end up with a bug
(if we forgot to add the new "case" in that "switch"). So let's make
sure proper internal error is printed:
default:
log_error(INTERNAL_ERROR "_info_run: unhandled info type");
return 0;
Fix 8121074fda126cc6c0df05fba066cc9365e00255 - the patch
incorrectly removed also other top-level nodes.
It needs to deactivate purely subnodes of _corig.
LVM2.2.02.112/tools/toollib.c:1991: leaked_storage: Variable "iter" going out of scope leaks the storage it points to.
LVM2.2.02.112/lib/filters/filter-usable.c:89: leaked_storage: Variable "f" going out of scope leaks the storage it points to.
LVM2.2.02.112/lib/activate/dev_manager.c:1874: leaked_handle: Handle variable "fd" going out of scope leaks the handle.
When getting status for LV segment types, we need to be sure
that proper segment is selected for the status ioctl.
When reporting fields that require status ioctl,
the "_choose_lv_segment_for_status_report" fn in tools/reporter.c
must be completed properly to choose the proper segment for all
the LV types (at the moment, it just takes the first LV segment
by default).
This works fine with cache LVs surely. The other segment types
need more auditing. We use this status ioctl only for cache status
fields at the moment only, so restrict it to the cache only.
Once the _choose_lv_segment_for_status_report is completed
properly, release the restriction in _get_segment_status_from_target_params.