IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In case "lvconvert -mN RaidLV" was used on a degraded
raid1 LV, success was returned instead of an error.
Provide message to inform about the need to repair first
before changing number of mirrors and exit with error.
Add new lvconvert-m-raid1-degraded.sh test.
Resolves: rhbz1573960
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
The mixed up vg repair code in vg_read was trying
to repair a vg when vg_read was called by clvmd.
The clvmd daemon isn't supposed to be repairing
or writing a vg.
(This is a temporary workaround; vg repair will soon
be pulled out of vg_read so it can be called in a
controlled way and consolidated instead of spread
around.)
In some pvmove tests, clvmd uses the new (precommitted)
saved_vg, but then requests the old saved_vg, and
expects that the new saved_vg be returned instead of
the old. So, when returning the new saved_vg, forget
the old one so we don't return it again.
When clvmd does a full label scan just prior to
calling _vg_read(), pass a new flag into _vg_read
to indicate that the normal rescan of VG devs is
not needed.
After reading a VG, stash it in lvmcache as "saved_vg".
Before reading the VG again, try to use the saved_vg.
The saved_vg is dropped on VG lock operations.
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Recent changes allow some major simplification of the way
lvmcache works and is used. lvmcache_label_scan is now
called in a controlled fashion at the start of commands,
and not via various unpredictable side effects. Remove
various calls to it from other places. lvmcache_label_scan
should not be called from anywhere during a command, because
it produces an incorrect representation of PVs with no MDAs,
and misclassifies them as orphans. This has been a long
standing problem. The invalid flag and rescanning based on
that is no longer used and removed. The 'force' variation is
no longer needed and removed.
We can't let clvmd keep all scanned devs open,
which prevents them from being removed. So
drop the bcache data (and close fds) affter
doing a label scan.
Also set up bcache before the clvm-specific
vg_read (which needs to rescan the vg's devs
using bcache) and destroy the bcache after.
Drop an extra label scan in the recovery part
of vg_read. This is a temporary improvement
until the pending replacement for the broken
recovery code burried in vg_read.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
When process_each_pv() calls vg_read() on the orphan VG, the
internal implementation was doing an unnecessary
lvmcache_label_scan() and two unnecessary label_read() calls
on each orphan. Some of those unnecessary label scans/reads
would sometimes be skipped due to caching, but the code was
always doing at least one unnecessary read on each orphan.
The common format_text case was also unecessarily calling into
the format-specific pv_read() function which actually did nothing.
By analyzing each case in which vg_read() was being called on
the orphan VG, we can say that all of the label scans/reads
in vg_read_orphans are unnecessary:
1. reporting commands: the information saved in lvmcache by
the original label scan can be reported. There is no advantage
to repeating the label scan on the orphans a second time before
reporting it.
2. pvcreate/vgcreate/vgextend: these all share a common
implementation in pvcreate_each_device(). That function
already rescans labels after acquiring the orphan VG lock,
which ensures that the command is using valid lvmcache
information.
Move the location of scans to make it clearer and avoid
unnecessary repeated scanning. There should be one scan
at the start of a command which is then used through the
rest of command processing.
Previously, the initial label scan was called as a side effect
from various utility functions. This would lead to it being called
unnecessarily. It is an expensive operation, and should only be
called when necessary. Also, this is a primary step in the
function of the command, and as such it should be called prominently
at the top level of command processing, not as a hidden side effect
of a utility function. lvm knows exactly where and when the
label scan needs to be done. Because of this, move the label scan
calls from the internal functions to the top level of processing.
Other specific instances of lvmcache_label_scan() are still called
unnecessarily or unclearly by specific commands that do not use
the common process_each functions. These will be improved in
future commits.
During the processing phase, rescanning labels for devices in a VG
needs to be done after the VG lock is acquired in case things have
changed since the initial label scan. This was being done by way
of rescanning devices that had the INVALID flag set in lvmcache.
This usually approximated the right set of devices, but it was not
exact, and obfuscated the real requirement. Correct this by using
a new function that rescans the devices in the VG:
lvmcache_label_rescan_vg().
Apart from being inexact, the rescanning was extremely well hidden.
_vg_read() would call ->create_instance(), _text_create_text_instance(),
_create_vg_text_instance() which would call lvmcache_label_scan()
which would call _scan_invalid() which repeats the label scan on
devices flagged INVALID. lvmcache_label_rescan_vg() is now called
prominently by _vg_read() directly.
To do label scanning, lvm code calls lvmcache_label_scan().
Change lvmcache_label_scan() to use the new label_scan()
based on bcache.
Also add lvmcache_label_rescan_vg() which calls the new
label_scan_devs() which does label scanning on only the
specified devices. This is for a subsequent commit and
is not yet used.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
When adjusting region size for clustered VG it always needs to fit
2 full bitset into 1MB due to old limits of CPG.
This is relatively big amount of bits, but we have still limitation
for region size to fit into 32bits (0x8000000).
So for too big mirrors this operation needs to fail - so whenever
function returns now 0, it means we can't find matching region_size.
Since return 0 is now 'error' we need to also pass proper region_size
when creating pvmove mirror.
Since extent_size is no longer power_of_2 this max region size
evalution was rather producing random bitsize as a combination
of lowest bit from number of extents and extent size itself.
Correct calculation to use whole LV size and pick biggest
possible power of 2 value smaller then UINT32_MAX.
Drop mirrored mirror log limitation that applies only in very limited
use-case and actually mirrored mirror log is deprecated anyway.
So 'disk' mirror log is selecting the correct minimal size, and
bigger size is only enforced with real mirrored mirror log.
Also for mirrored mirror log we let use 'smalled' region size if needed
so if user uses 1G region size, we still keep small mirror log
with much smaller region size in this case when needed.
Also mirror log extent calculation is now properly detecting error
with too big mirrors where previosly trimmed uint32_t was applies
unintentionally.
Only policy 'smq' is meant to be used with format version 2.
Code used to let pass 'mq' policy also with format 2. But 'mq'
is obsoloted wth smq and kernel currently matches it. But this
is incompatible with older original mq logic - so disallow creation
of this rather useless combination.
In case a newly created RaidLV is blacklisted using config
\"activation { volume list = [ ... ] }\" (i.e. its SubLVs stay inactive),
the metadata SubLVs can't get wiped thus failing the creation.
As a result, the RaidLV together with its SubLVs
is left behind in an inconsistent state.
Fix by removing the RaidLV and provide a hint about volume_list reasoning.
Resolves: rhbz1161347
Detect we are in prioritezed section instead of critical one,
since these operation were supposed to NOT be happining during
whole set of operation.
This patch fixes verification of udev operations.
Just like with lvcreate, this lvconvert case also need to properly
check which LV actually holds lock for cached origin - as it might
be i.e. thin-pool tdata subLV.
If componet devices could be activated alone, ensure they are not breaking
common commands.
TODO: mostly likely this is not a definite list of all needed checks
and more will come later.
This is the 'last' place where a LV is present in metadata.
Any removed device should not be left active in dm table.
So this check is an extra validation protection to capture any
forgotten deactivation (adding 1 extra ioctl into lvremove path)
Introduce:
lv_is_component() check is LV is actually a component device.
lv_component_is_active() checking if any component device is active.
lv_holder_is_active() is any component holding device is active.