IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Introduce prioritized_section() as a closer match to previous logic
of critical_section() that has been held over longer sequence of
ioctl commands - essentially it's matching operation on a single
cookie.
While 'critical_section()' now corresponds to locked memory - we hold
this memory only between suspend/resume thus notion of 'cookie' was
lost.
This patch restores some logic unintentionaly lost with dropping
memory locking for just activation/deactivation calls.
are affected by the move. (Currently it's possible for I/O to become
trapped between suspended devices amongst other problems.
The current fix was selected so as to minimise the testing surface. I
hope eventually to replace it with a cleaner one that extends the
deptree code.
Some lvconvert scenarios still suffer from related problems.
New strategy for memory locking to decrease the number of call to
to un/lock memory when processing critical lvm functions.
Introducing functions for critical section.
Inside the critical section - memory is always locked.
When leaving the critical section, the memory stays locked
until memlock_unlock() is called - this happens with
sync_local_dev_names() and sync_dev_names() function call.
memlock_reset() is needed to reset locking numbers after fork
(polldaemon).
The patch itself is mostly rename:
memlock_inc -> critical_section_inc
memlock_dec -> critical_section_dec
memlock -> critical_section
Daemons (clmvd, dmevent) are using memlock_daemon_inc&dec
(mlockall()) thus they will never release or relock memory they've
already locked memory.
Macros sync_local_dev_names() and sync_dev_names() are functions.
It's better for debugging - and also we do not need to add memlock.h
to locking.h header (for memlock_unlock() prototyp).
This patch adds a new implementation of locking function instead
of mlockall() that may lock way too much memory (>100MB).
New function instead uses mlock() system call and selectively locks
memory areas from /proc/self/maps trying to avoid locking areas
unused during lock-ed state.
Patch also adds struct cmd_context to all memlock() calls to have
access to configuration.
For backward compatibility functionality of mlockall()
is preserved with "activation/use_mlockall" flag.
As a simple check, locking and unlocking counts the amount of memory
and compares whether values are matching.