IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For percentage display we need -tpool - so check for layered
device presence here instead of plain pool device.
Also update 'info' - so when pool is 'available' we
display open count for -tpool device instead of mostly
irrelevant pool.
TODO: Maybe we should actually display this open info always?
(even when just -tpool is available, but pool is not)
Emphesize virtual extents for virtual LVs and for
those use 'Virtual extents' instead of 'Logical extents',
so it's immeditatelly visible, which extents do have
straighforward physical backend.
Given a named mirror LV, vgsplit will look for the PVs that compose it
and move them to a new VG. It does this by first looking at the log
and then the legs. If the log is on the same device as one of the mirror
images, a problem occurs. This is because the PV is moved to the new VG
as the log is processed and thus cannot be found in the current VG when
the image is processed. The solution is to check and see if the PV we are
looking for has already been moved to the new VG. If so, it is not an
error.
ignore_suspended_devices=0 is already used in lvm.conf we distribute,
but it was still "1" in the code (so it was used when lvm.conf value
was not defined). It should be "0" too.
Perform two allocation attempts with cling if maximise_cling is set,
first with then without positional fill.
Avoid segfaults from confusion between positional and sorted sequential
allocation when number of stripes varies as reported here:
https://www.redhat.com/archives/linux-lvm/2014-March/msg00001.html
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
The refactoring made by 732859d21f3b41bdb188f92b60f25d5c94dcee8a
caused this. The former "ea" was not renamed to "ba" and we used
incorrect tree node name to search for the value.
In general for non-toplevel LVs we shouldn't allow any _tree_action.
For now error on request for cache_pool activation which
doesn't even exist in dm-table.
When down-converting a RAID1 LV, if the user specifies too few devices,
they will get a confusing message.
Ex:
[root]# lvcreate -m 2 --type raid1 -n raid -L 500M taft
Logical volume "raid" created
[root]# lvconvert -m 0 taft/raid /dev/sdd1
Unable to extract enough images to satisfy request
Failed to extract images from taft/raid
This patch makes the error message a bit clearer by telling the user
the count they are trying to remove and the number of devices they
supplied.
[root@bp-01 lvm2]# lvcreate --type raid1 -m 3 -L 200M -n lv vg
Logical volume "lv" created
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sdb1
Unable to remove 3 images: Only 1 device given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bc]1
Unable to remove 3 images: Only 2 devices given.
Failed to extract images from vg/lv
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcd]1
[root@bp-01 lvm2]# lvs -a -o name,attr,devices vg
LV Attr Devices
lv -wi-a----- /dev/sde1(1)
This patch doesn't work in all cases. The user can specify the right
number of devices, but not a sufficient amount of devices from the LV.
This will produce the old error message:
[root@bp-01 lvm2]# lvconvert -m -3 vg/lv /dev/sd[bcf]1
Unable to extract enough images to satisfy request
Failed to extract images from vg/lv
However, I think this error message is sufficient for this case.
Since the usability problem were fixed, we can use this function.
Cleanup orphan LVs with TEMPORARY flags
(reduces couple blkid error reports, but couple of them
is still left...)
Since cache segment is purely virtual mapping, it has nothing for
discard. Discardable is cache origin here which is now
properly removed on 'delete' phase.
Plain lv_empty() call needs to only detach cache origin and leave
origin unchanged.