IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When pvcreate/pvremove prompt the user, they first release
the global lock, then acquire it again after the prompt,
to avoid blocking other commands while waiting for a user
response. This release/reacquire changes the locking
order with respect to the hints flock (and potentially other
locks). So, to avoid deadlock, use a nonblocking request
when reacquiring the global lock.
These two flags may be not reset at the end of
the command when the unlock is implicit, which
is a problem if the cmd struct is reused.
Clear the flags in the general fin_locking.
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
This fixes a problem in commit e6bb780d242, in which the
back compat handling for the old locking_type=4 was
incorrectly translated to mean the same thing as --readonly,
which prevented activation because activation uses an
exclusive vg lock. Previously, locking_type=4 allowed
activation.
If we see locking_type 4 in an old config, translate it to
the new combination of --readonly and --sysinit, which we
now define to mean the --readonly behavior with an exception
to allow activation.
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
The options: --nolocking, --readonly, --sysinit
override, or make exceptions to, the normal file locking
behavior. Implement these by just checking for the
options in the file locking path instead of using
special locking types.
Basic LV functions:
activate_lv(), deactivate_lv(),
suspend_lv(), resume_lv()
were routed through the locking infrastruture on the way to:
lv_activate_with_filter(), lv_deactivate(),
lv_suspend_if_active(), lv_resume_if_active()
This commit removes the locking infrastructure from the
middle and calls the later functions directly from the former.
There were a couple of ancillary steps that the locking
infrastructure added along the way which are still included:
- critical section inc/dec during suspend/resume
- checking for active component LVs during activate
The "activation" file lock (serializing activation) has not
been kept because activation commands have been changed to
take the VG file lock exclusively which makes the activation
lock unused and unnecessary.
Four commands lock two VGs at a time:
- vgsplit and vgmerge already have their own logic to
acquire the locks in the correct order.
- vgimportclone and vgrename disable this ordering check.
Different flavors of activate_lv() and lv_is_active()
which are meaningful in a clustered VG can be eliminated
and replaced with whatever that flavor already falls back
to in a local VG.
e.g. lv_is_active_exclusive_locally() is distinct from
lv_is_active() in a clustered VG, but in a local VG they
are equivalent. So, all instances of the variant are
replaced with the basic local equivalent.
For local VGs, the same behavior remains as before.
For shared VGs, lvmlockd was written with the explicit
requirement of local behavior from these functions
(lvmlockd requires locking_type 1), so the behavior
in shared VGs also remains the same.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
While 'file-locking' code always dropped cached VG before
lock was taken - other locking types actually missed this.
So while the cache dropping has been implement for i.e. clvmd,
actually running command in cluster keept using cache even
when the lock has been i.e. dropped and taken again.
This rather 'hard-to-hit' error was noticable in some
tests running in cluster where content of PV has been
changed (metadata-balance.sh)
Fix the code by moving cache dropping directly lock_vol() function.
TODO: it's kind of strange we should ever need drop_cached_metadata()
used in several places - this all should happen automatically
this some futher thinking here is likely needed.
In fact pvmove does support 'clustered-core' target for clustered
pvmove of LVs activated on multiple nodes.
This patch restores support for activation of pvmove on all nodes
for LVs that are also activate on all nodes.
There is no need to differentiation between clustered VG and normal VG.
As the activation depends on locking type.
Use unconditionally locally exclusive activation for pvmove.
When activation of LVs fails prior pvmove start, try to deactivate
already activated LVs.
TODO: possibly remember which LVs where already activate and only those
take down - devices which are already in-use will stay active.
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
Take a local file lock to prevent concurrent activation/deactivation of LVs.
Thin/cache types and an extension for cluster support are excluded for
now.
'lvchange -ay $lv' and 'lvchange -an $lv' should no longer cause trouble
if issued concurrently: the new lock should make sure they
activate/deactivate $lv one-after-the-other, instead of overlapping.
(If anyone wants to experiment with the cluster patch, please get in touch.)
Correct return code of activate_lv_excl().
Function is not supposed to return activation state of
activated volume, but return code of the operation.
Since i.e. when activation filter is allowing to activate
volume on current system, it is still success even though
no volume is activated.
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
Activation on remote node should be tried only if it is masked by tags
locally (like when hosttags enabled, IOW activate_lv_excl_local()
doesn't return error.)
Introduced change caused that lvchange -aey succeeded even if volume was
activated exclusively remotely.