IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
vgmerge suffers from a similar problem to the one fixed in commit
8146548d25e9104f0d530d943290d448c1994c0a ("vgsplit: Fix intermediate
metadata corruption.")
When merging, splitting or renaming VGs, use a new PV status flag
PV_MOVED_VG to mark the PVs that hold metadata with the old VG name and
use this to provide PV-level granularity instead of incorrectly assuming
all PVs in the VG are the same.
Changing the VG of a PV uses the same on-disk mechanism as vgrename.
This relies on recognising both the old and new VG names. Prior to this
patch the vgsplit code incorrectly provided the new VG name twice
instead of the old and new ones. This lead the low-level mechanism not
to recognise the device as already belonging to a VG and so paying no
attention to the location of its existing metadata, sometimes partly
overwriting it and then later trying to read the corrupt metadata and
issuing a checksum error.
In a shared VG, only allow pvmove with a named LV,
so that only PE's used by the LV will be moved.
The LV is then activated exclusively, ensuring that
the PE's being moved are not used from another host.
Previously, pvmove was mistakenly allowed on a full PV.
This won't work when LVs using that PV are active on
other hosts.
Enable handling of --poolmetadataspare so if user can prevent
creation of _pmspare volume during --repair operation (just
like during actual lvcreate or lvconvert) for pool volumes.
When file-locking mode failed on locking, such description was leaked
(typically not an issue since command usually exists afterwards).
So shirt close() at the end of function and use it in all error paths.
Also make sure, when interrrupt is detected, it's really not holding
lock and returns 0.
Fix code checking that the 2nd mda which is at the end of disk really
fits the available free space and avoid any DA and MDA interleaving when
we already have DA preallocated. This mainly applies when we're restoring
a PV from VG backup using pvcreate --restorefile where we may already have
some DA preallocated - this means the PV was in a VG before with already
allocated space from it (the LVs were created). Hence we need to avoid
stepping into DA - the MDA can never ever be inside in such case!
The code responsible for this calculation was already in
_text_pv_add_metadata_area fn, but it had a bug in the calculation where
we subtracted one more sector by mistake and then the code could still
incorrectly allocate the MDA inside existing DA. The patch also renames
the variable in the code so it doesn't confuse us in future.
Also, if the 2nd mda doesn't fit, don't silently continue with just 1
MDA (at the start of the disk). If 2nd mda was requested and we can't
create that due to unavailable space, error out correctly (the patch
also adds a test to shell/pvcreate-operation.sh for this case).
If the PV was originally created with a larger-than-default
metadata area the restored one wasn't and might not even be
large enough to hold the metadata!
Previously the cache remembered an existing bootloaderarea and
reinstated it (without even checking for overlap) when asked to
write out the PV. pvcreate could write out an incorrect layout.
Avoid adding -g more then once for debug builds.
Avoid enabling DEBUG_MEM when we build multithreaded tools.
Link executables with -fPIE -pie and --export-dynamic LDFLAGS
Introduce PROGS_FLAGS to add option to pass flags for external libs.
Link lvm2 internally library only when really used.
Link DAEMON_LIBS with daemons.
Pass VALGRIND_CFLAGS internally
Set shell failure mode on couple places.
lvm2 warned about zeroing and too big chunksize (>=512KiB), but
only during lvconvert, so lvcreate was creating thin-pools
without any warning about possible slowness of thin provisioning
because of zeroing.
Since _deactivate_and_remove_lvs() is used in more then one place,
move the needed udev synchronization into this function so other
users automatically get correct fs state before next dm manipulation.
Assumption here is that this udev synchronization 'delay' may also
prevent to 'early' table reloads which might cause kernel problems
for md-core - but we may need more generic time-limited reload
frequency for raid devices.
Note: on udev-less system there will be almost no delay.
Since we are reading size as (double) we can get way bigger
number then just plain int64. So to make this check actually
more valid and usable do a maxsize compare in 'double'.
Initialize mutex upfront any debugging and fix this report:
Mutex reinitialization: mutex 0x485d20, recursion count 0, owner 1.
at 0x4C38480: pthread_mutex_init_intercept (drd_pthread_intercepts.c:821)
by 0x4C38480: pthread_mutex_init (drd_pthread_intercepts.c:830)
by 0x11F359: main (clvmd.c:562)
mutex 0x485d20 was first observed at:
at 0x4C38F63: pthread_mutex_lock_intercept (drd_pthread_intercepts.c:885)
by 0x4C38F63: pthread_mutex_lock (drd_pthread_intercepts.c:898)
by 0x11E920: debuglog (clvmd.c:254)
by 0x11F1D8: main (clvmd.c:527)
Switch from warn to log_error since this generated
failing return code for command so printing log_error()
is mandatory.
Happens with i.e. pvscan --cache meets crashing lvmetad.
Centralise editing of the client list into _add_client() and
_del_client(). Introduce _local_client_count to track the size of the
list for debugging purposes. Simplify and standardise the various ways
the list gets walked.
While processing one element of the list in main_loop(),
cleanup_zombie() may be called and remove a different element, so make
sure main_loop() refreshes its list state on return. Prior to this
patch, the list edits for clients disappearing could race against the
list edits for new clients connecting and corrupt the list and cause a
variety of segfaults.
An easy way to trigger such failures was by repeatedly running shell
commands such as:
lvs &; lvs &; lvs &;...;killall -9 lvs; lvs &; lvs &;...
Situations that occasionally lead to the failures can be spotted by
looking for 'EOF' with 'inprogress=1' in the clvmd debug logs.
lvm_run needs to place NULL as the last element into argv[].
Otherwise we get:
Conditional jump or move depends on uninitialised value(s)
_command_required_pos_matches (lvmcmdline.c:1443)
_find_command (lvmcmdline.c:1610)
lvm_run_command (lvmcmdline.c:2770)
lvm2_run (lvmcmdlib.c:91)
When raid leg rimage device is marked as 'D'ead by mdcore,
lvm2 was not able to replace such device with allocate policy,
as device has not appared as missing.
Add detection of transiently failing devices.
Basically reverting commit 58a9f88b8c021a5e056b883053f257f1a898adf7.
We can use origin_only in case we are snapshot's origin,
as we do support this stack.
So when we are 'uncaching' origin+snaps - we do need to reload only
origin and we do not need to play with snaps.
'lvdisplay -m' tried to go through NULL policy settings,
when such policy was not defined for CachedLV.
Patch is fixing display of cache-pool without defined settings,
as this is now a valid pool and we mostly want users to define
these settings when actually really caching a LV.
Since cache LV can be a stacked device, there is no real reason
trying to use slight optimised tree for origin_only cache reload
(it could be even wrongly implemented in this case).
We can easily go with stardard tree load here.
When user runs command like 'lvconvert --splitcache' the operation
might be actually either slow or not making any progress in kernel,
so lets give user a chance to abort such operation.
When user press 'Ctrl+C' device table is restored to pre-flushing state.
Enhance reporting code, so it does not need to do 'extra' ioctl to
get 'status' of normal raid and provide percentage directly.
When we have 'merging' snapshot into raid origin, we still need to get
this secondary number with extra status call - however, since 'raid'
is always a single segment LV - we may skip 'copy_percent' call as
we directly know the percent and also with better precision.
NOTE: for mirror we still base reported number on the percetage of
transferred extents which might get quite imprecisse if big size
of extent is used while volume itself is smaller as reporting jump
steps are much bigger the actual reported number provides.
2nd.NOTE: raid lvs line report already requires quite a few extra status
calls for the same device - but fix will be need slight code improval.
Previously, we were treating non-RAID to RAID up-converts as a "resync"
operation. (The most common example being 'linear -> RAID1'.) RAID to
RAID up-converts or rebuilds of specific RAID images are properly treated
as a "recover" operation.
Since we were treating some up-convert operations as "resync", it was
possible to have scenarios where data corruption or data loss were
possibilities if the RAID hadn't been able to sync completely before a
loss of the primary source devices. In order to ensure that the user took
the proper precautions in such scenarios, we required a '--force' option
to be present. Unfortuneately, the force option was rendered useless
because there was no way to distiguish the failure state of a potentially
destructive repair from a nominal one - making the '--force' option a
requirement for any RAID1 repair!
We now treat non-RAID to RAID up-converts properly as "recover" operations.
This eliminates the scenarios that can potentially cause data loss or
data corruption; and this eliminates the need for the '--force' requirement.
This patch removes the requirement to specify '--force' for RAID repairs.
Two of the sync actions performed by the kernel (aka MD runtime) are
"resync" and "recover". The "resync" refers to when an entirely new array
is going through the process of initializing (or resynchronizing after an
unexpected shutdown). The "recover" is the process of initializing a new
member device to the array. So, a brand new array with all new devices
will undergo "resync". An array with replaced or added sub-LVs will undergo
"recover".
These two states are treated very differently when failures happen. If any
device is lost or replaced while "resync", there are no worries. This is
because any writes created from the inception of the array have occurred to
all the devices and can be safely recovered. Even though non-initialized
portions will still be resync'ed with uninitialized data, it is ok. However,
if a pre-existing device is lost (aka, the original linear device in a
linear -> raid1 convert) during a "recover", data loss can be the result.
Thus, writes are errored by the kernel and recovery is halted. The failed
device must be restored or removed. This is the correct behavior.
Unfortunately, we were treating an up-convert from linear as a "resync"
when we should have been treating it as a "recover". This patch
removes the special case for linear upconvert. It allows each new image
sub-LV to be marked with a rebuild flag and treats the array as 'in-sync'.
This has the correct effect of causing the upconvert to be treated as a
"recover" rather than a "resync". There is no need to flag these two states
differently in LVM metadata, because they are already considered differently
by the kernel RAID metadata. (Any activation/deactivation will properly
resume the "recover" process and not a "resync" process.)
We make this behavior change based on the presense of dm-raid target
version 1.9.0+.