IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Commit a8921be641afe865c177e11b8859f4b937f76995 was supposedly a fix
for unwanted table reload - however before final commit, the tiny
change has been made that was believed to be an enhancment
of original prepared patch. Unfortunatelly the function
locking_is_clustered is not meant to be an equivalent test
of original function. Drop this change and using
original patch.
Fix bug in table reload for clustered VG.
Function used in lv/vgchange --monitor y|n is using 'somewhat' hackish
shortcut and accesses activation function monitor_dev_for_events()
directly rather through full device refresh to avoid table reload
in case user want to only change monitoring state of device.
However since with old 'mirrors' there is table change dropping
handle_error there was in some cases needed table update.
This was put into monitor_dev_for_events() with assumption
vg_write_lock_held() could be used to decide if the actual monitoring
change comes from read-only lock-holding commands lvchange/vgchange.
However the clustered locking part (clvmd) actually doesn't differentiate
about this concept of having VG openned in read-only or write mode.
So it caused unwanted reloads of mirror tables even in commands like lvconvert.
Thus for clustered locking there is full table reload put into the code and
shortcut applies only for non-clustered locking.
Also the patch tries to avoid calling repeated LV refresh in case the
lv/vgchange uses --refresh & --monitor.
Udev is running udev-rule action upon 'resume'.
However lvm2 in special case is doing replacement of
'soon-to-be-removed' device with 'error' target for resuming
and then follows actual removal - the sequence is usually quick,
so when udev start action - it can result in 'strange' error
message in kernel log like:
Process '/usr/sbin/dmsetup info -j 253 -m 17 -c --nameprefixes --noheadings --rows -o name,uuid,suspended' failed with exit code 1.
To avoid this - we need to ensure there is synchronization wait for udev
between 'resume' and 'remove' part of this process.
However existing code put strict requirement to avoid synchronizing with
udev inside critical section - but this originally came from requirement
to not do anything special while there could be devices in
suspend-state. Now we are able to see differnce between critical section
with or without suspended devices. For udev synchronization only
suspended devices are prohibited to be there - so slightly relax
condition and allow calling and using 'fs_sync()' even inside critical
section - but there must not be any suspended device.
There's a small window during creation of a new RaidLV when
rmeta SubLVs are made visible to wipe them in order to prevent
erroneous discovery of stale RAID metadata. In case a crash
prevents the SubLVs from being committed hidden after such
wiping, the RaidLV can still be activated with the SubLVs visible.
During deactivation though, a deadlock occurs because the visible
SubLVs are deactivated before the RaidLV.
The patch adds _check_raid_sublvs to the raid validation in merge.c,
an activation check to activate.c (paranoid, because the merge.c check
will prevent activation in case of visible SubLVs) and shares the
existing wiping function _clear_lvs in raid_manip.c moved to lv_manip.c
and renamed to activate_and_wipe_lvlist to remove code duplication.
Whilst on it, introduce activate_and_wipe_lv to share with
(lvconvert|lvchange).c.
Resolves: rhbz1633167
(cherry picked from commit dd5716ddf258c4a44819fa90d3356833ccf767b4)
Conflicts:
WHATS_NEW
lib/activate/activate.c
lib/metadata/lv_manip.c
lib/metadata/raid_manip.c
tools/lvchange.c
tools/lvconvert.c
devices/scan_lvs (default 1) determines whether lvm
will scan LVs for layered PVs. The lvm behavior has
always been to scan LVs, but it's rare for LVs to have
layered PVs, and much more common for there to be many
LVs that substantially slow down scanning with no benefit.
This is implemented in the usable filter, and has the
same effect as listing all LVs in the global_filter.
With improved mirror activation code --splitmirror issue poppedup
since there was missing proper preload code and deactivation
for splitted mirror leg.
If a mirror LV is listed in read_only_volume_list, it would
still be activated rw. The activation would initially be
readonly, but the monitoring function would immediately
change it to rw. This was a regression from commit
fade45b1d14c mirror: improve table update
The monitoring function needs to copy the read_only setting
into the new set of mirror activation options it uses.
When pvmoving LV - the target for LV is a mirror so the validation
that checked the type is matching was incorrect.
While we need a more generic enhancment of LVS output for pvmoved LVs,
for now at least stop showing internal errors and 'X' symbols in attrs.
To avoid the chance of freeing a saved vg while another
code path is using it, defer freeing saved vgs until
all the lvmcache content is dropped for the vg.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
Shift refresh of mirror table right into monitor_dev_for_events().
Use !vg_write_lock_held() to recognize use of lvchange/vgchange.
(this shall change if this would no longer work, but requires
futher some API changes).
With this patch dm mirror table is only refreshed when necassary.
Also update WARNING message about mirror usage without monitoring
and display LV name.
In some pvmove tests, clvmd uses the new (precommitted)
saved_vg, but then requests the old saved_vg, and
expects that the new saved_vg be returned instead of
the old. So, when returning the new saved_vg, forget
the old one so we don't return it again.
After reading a VG, stash it in lvmcache as "saved_vg".
Before reading the VG again, try to use the saved_vg.
The saved_vg is dropped on VG lock operations.
The copy of the VG which clvmd stashes in lvmcache should
not only be used between suspend and resume, but between
sequential LV operations in clvmd, so that clvmd does not
need to reread the VG for each one. Prepare for that by
renaming the stashed VG as "saved_vg".
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
Whenever we make visible LV out of previously invisible one,
reload it's table - the is mandator for proper udev rule
processing as well as ensure content of dm table is correct.
TODO: this new generic rule probably make extra raid rules unnecessary.
If the tools for checking thin_pool or cache metadata are missing,
issue rather just a WARNING, but let the operation of activation
continue.
This has the advantage, the if user is missing those tools,
but he already started to use thinpool or cacheing, he can
access these volumes with a WARNING.
Also if the user is using too old tools i.e. for CacheV2 format
dmpd tool 0.7 is required - provide informative WARNING and
skip failure from older tool version which can't understand
new format V2.
Detect we are in prioritezed section instead of critical one,
since these operation were supposed to NOT be happining during
whole set of operation.
This patch fixes verification of udev operations.
Just like lvm2 has internal devices like _tdata which is using UUID with
suffix, there is similar private type of device for crypto device where
they are using CRYPT-TEMP uuid prefix.
Also ignore stratis.
Some kernel version suffer from bad state transition where a device
steps into 'frozen' mode. Any application that tries to read such
raid gets unfortunatelly bloked.
As some sort of protection try to skip such raid device from being
scanned to minimize chances to block lvm2 command on such scan.
When such device is found, warning gets printed.
RaidLVs on read_only_volume_list have their SubLVs
activated readonly thus disabling metadata updates
or image resynchronization/recovery. Bug also causes
automatic repairs to fail.
Fix by always activating the RAID SubLVs readwrite.
Resolves: rhbz1208269
When snapshot is created in read-only mode with 'lvcreate -s -pr...',
lvm2 still needs to be able to write to layered -cow volume
to store metadata and exceptions blocks.
TODO: in some case we might be able to do full tree with read-only
volume but this probably needs futher validation:
1. checking snapshot header already exist
2. origin & snapshot are both in read-only mode.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
Introduce:
lv_is_component() check is LV is actually a component device.
lv_component_is_active() checking if any component device is active.
lv_holder_is_active() is any component holding device is active.
So this is a bit more complex and possibly worth futher checking.
ATM clvmd drops cmd->mem mempool AFTER refresh of cmd.
So anything allocating from cmd->mem during toolcontext init
will likely die at some point in time.
As a quick fix - just use regular malloc/free for 'dso' alloction.
It's worth to note - cmd->libmem seems to be often misused
causing hidden memleaking for clvmd.
Build dso plugin name during segtype initialisation and just
use the string during command life-time.
Also slightlt update message verbosity and make it very_verbose
when operation is going to be made and 'verbose' when it's done.
Avoid using same return code for reporting 2 different things
and stricly report error code by return value and add new
parameter for reporting monitoring status.
This makes easier to recognize which error we got from dm_event
and continue only with ENOENT.
In fact pvmove does support 'clustered-core' target for clustered
pvmove of LVs activated on multiple nodes.
This patch restores support for activation of pvmove on all nodes
for LVs that are also activate on all nodes.
Add protectional internall error whenever we spot activation
of 'exclusive' only segments in 'non-exclusive' mode.
TODO: possibly the activation locking could be enhanced to handle
this fully behind the scene - as for now this works purely for
lvchange/vgchange activation.
In case of failed legs, raid replaces those with
e.g. "vg-lv_rimage_0-missing_0_0" mapped to an error target.
Those errouneously remain on deactivation.
Fix by removing them on deactivation/removal of the RaidLV.