IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Why using the order 69:
- Storage processing in general happens in 60-persistent-storage.rules,
including the blkid call that adds some usable information we can use
for filtering and speedup (these rules are part of upstream udev and
the order is preserved on most distros)
- There's still some other storage-related processing done after
60-persistent-storage.rules in general. These might add some detailed
storage-related information we might use to filter devices effectively
(e.g. MD udev rules, ...).
- We need lvmetad rules to be processed before any consumers can use the
output - so the metadata cache is ready soon enough (e.g. udisks rules).
- There's no official (upstream udev) document about assigning the order,
so this number is chosen in best belief it will suit all scenarios.
Should be faster then strncpy - since we could avoid clearing 4KB pages
with each strncpy(...,PATH_MAX).
Also it's easy to check whether string fit - and eventually avoid
to continue working we incomplete string.
If we have good enough glibc to return number of needed chars, do not
loop try to reach good size, but use this size directly for allocation,
saving also last strdup.
Since now we start with 16 bytes - skip buffer realloc for shorter string.
make devices invisible to lvm, but the behaviour of those is slightly different
than of actual missing devices. Running vgscan after re-enabling the device
triggers a metadata repair which is not done by vgremove -ff. This is not a
regression, merely an odd behaviour that has been around even before lvmetad.
The code fail to account for the case where we just need a single device
in a RAID 4/5/6 array. There is no good way to tell the allocation functions
that we don't need parity devices when we are allocating just a single device.
So, I've used a bit of a hack. If we are allocating an area_count that is <=
the parity count, then we can assume we are simply allocating a replacement
device (i.e. no need to include parity devices in the calculations). This
should make sense in most cases. If we need to allocate replacement devices
due to failure (or moving), we will never allocate more than the parity count;
or we would cause the array to become unusable. If we are creating a new device,
we should always create more stripes than parity devices.