IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In some odd cases (e.g. tests) there are very few devices
which results in creating too few blocks in bcache, so
create bcache with a minimum number of blocks.
Commands using lvmetad will not begin with a proper
label_scan which initializes bcache, but may later
decide they need to scan a set of devs, in which case
they'll need bcache set up at that point.
This is a temporary hacky workaround to the problem of
reads going through bcache and writes not using bcache.
The write path wants to read parts of data that it is
incrementally writing to disk, but the reads (using
bcache) don't work because the writes are not in the
bcache. For now, add a dev to bcache before each attempt
to read it in case it's being used on the write path.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
No longer use the external 'result' pointer internally to set up the
cached label. The callback _set_label_read_result() is now given the
internal label pointer directly
Callers that don't need the result are no longer required to pass a
label pointer into label_read().
Callers that read larger amounts of data now get a pointer to read-only
data directly without copying it through an intermediate buffer. This
data is owned by the device layer so the callers no longer free it.
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
Previously the cache remembered an existing bootloaderarea and
reinstated it (without even checking for overlap) when asked to
write out the PV. pvcreate could write out an incorrect layout.
Translate log_info() into log_very_verbose() which is macro
supposed to be used by our code.
log_info() is internal macro with eventually some 'symbolic' meaning
in syslogging daemons.
A number of places are working on a specific dev when they
call lvmcache_info_from_pvid() to look up an info struct
based on a pvid. In those cases, pass the dev being used
to lvmcache_info_from_pvid(). When a dev is specified,
lvmcache_info_from_pvid() will verify that the cached
info it's using matches the dev being processed before
returning the info. Calling code will not mistakenly
get info for the wrong dev when duplicate devs exist.
This confusion was happening when scanning labels when
duplicate devs existed. label_read for the first dev
would add an info struct to lvmcache for that dev/pvid.
label_read for the second dev would see the pvid in
lvmcache from first dev, and mistakenly conclude that
the label_read from the second dev can be skipped
because it's already been done. By verifying that the
dev for the cached pvid matches the dev being read,
this mismatch is avoided and the label is actually read
from the second duplicate.
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
Use similar logic as with text_vg_import_fd() and avoid repeated
parsing of same mda and its config tree for vgname_from_mda().
Remember last parsed vgname, vgid and creation_host in labeller
structure and if the metadata have the same size and checksum,
return this stored info.
TODO: The reuse of labeller struct is not ideal, some lvmcache API for
this functionality would be nicer.