IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The devices file /etc/lvm/devices/system.devices is a list of
devices that lvm can use. This is the default system devices
file, which is specified in lvm.conf devices/devicesfile.
The command option --devicesfile <filename> allows lvm to be
used with a different set of devices. This allows different
applications to use lvm on different sets of devices, e.g.
system devices do not need to be exposed to an application
using lvm on its own devices, and application devices do not
need to be exposed to the system.
In most cases (with limited exceptions), lvm will not read or
use a device not listed in the devices file. When the devices
file is used, the regex filter is not used, and the filter
settings in lvm.conf are ignored. filter-deviceid is used
when the devices file is enabled, and rejects any device that
does not match an entry in the devices file.
Set use_devicesfile=0 in lvm.conf or set --devicesfile ""
on the command line to disable the use of a devices file.
When disabled, lvm will see and use any device on the system
that passes the regex filter (and other standard filters.)
A device ID, e.g. wwid or serial number from sysfs, is a
unique ID that identifies a device. The device ID is
generally independent of the device content, and lvm can
get the device ID without reading the device.
The device ID is used in the devices file as the primary
method of identifying device entries, and is also included
in VG metadata for PVs.
Each device_id has a device_id_type which indicates where
the device_id comes from, e.g. "sys_wwid" means the device_id
comes from the sysfs wwid file. Others are sys_serial,
mpath_uuid, loop_file, md_uuid, devname. (devname is the
device path, which is a fallback when no other proper
device_id_type is available.)
filter-deviceid permits lvm to use only devices on the system
that have a device_id matching a devices file entry. Using
the device_id, lvm can determine the set of devices to use
without reading any devices, so the devices file will constrain
lvm in two ways:
1. it limits the devices that lvm will read.
2. it limits the devices that lvm will use.
In some uncommon cases, e.g. when devices have no unique ID
and device_id has to fall back to using the devname, lvm may
need to read all devices on the system to determine which
ones correspond to the devices file entries. In this case,
the devices file does not limit the devices that lvm reads,
but it does limit the devices that lvm uses.
pvcreate/vgcreate/vgextend are not constrained by the devices
file, and will look outside it to find the new PV. They assign
the new PV a device_id and add it to the devices file. It is
also possible to explicitly add new PVs to the devices file before
using them in pvcreate/etc, in which case these commands would not
need to look outside the devices file for the new device.
vgimportdevices VG looks at all devices on the system to find an
existing VG and add its devices to the devices file. The command
is not limited by an existing devices file. The command will also
add device_ids to the VG metadata if the VG does not yet include
device_ids. vgimportdevices -a imports devices for all accessible
VGs. Since vgimportdevices does not limit itself to devices in
an existing devices file, the lvm.conf regex filter applies.
Adding --foreign will import devices for foreign VGs, but device_ids
are not added to foreign VGs. Incomplete VGs are not imported.
The lvmdevices command manages the devices file. The primary
purpose is to edit the devices file, but it will read PV headers
to find/check PVIDs. (It does not read, process or modify VG
metadata.)
lvmdevices
. Displays devices file entries.
lvmdevices --check
. Checks devices file entries.
lvmdevices --update
. Updates devices file entries.
lvmdevices --adddev <devname>
. Adds devices_file entry (reads pv header).
lvmdevices --deldev <devname>
. Removes devices file entry.
lvmdevices --addpvid <pvid>
. Reads pv header of all devices to find <pvid>,
and if found adds devices file entry.
lvmdevices --delpvid <pvid>
. Removes devices file entry.
The vgimportclone command has a new option --importdevices
that does the equivalent of vgimportdevices with the cloned
devices that are being imported. The devices are "uncloned"
(new vgname and pvids) while at the same time adding the
devices to the devices file. This allows cloned PVs to be
imported without duplicate PVs ever appearing on the system.
The command option --devices <devnames> allows a specific
list of devices to be exposed to the lvm command, overriding
the devices file.
cmd context has 'threaded' value that used be set
by clvmd - and allowed proper memory locking management.
Reuse same bit for dmeventd.
Since dmeventd is using 300KiB stack per thread,
we will ignore any user settings for allocation/reserved_stack
until some better solution is find.
This avoids crashing of dmevend when user changes this value
and because in most cases lvm2 should work ok with 64K stack
size, this change should not cause any problems.
Switch remaining zero sized struct to flexible arrays to be C99
complient.
These simple rules should apply:
- The incomplete array type must be the last element within the structure.
- There cannot be an array of structures that contain a flexible array member.
- Structures that contain a flexible array member cannot be used as a member of another structure.
- The structure must contain at least one named member in addition to the flexible array member.
Although some of the code pieces should be still improved.
The lock adopt feature was disabled since it had used
lvmetad as a source of info. This replaces the lvmetad
info with a local file and enables the adopt feature again
(enabled with lvmlockd --adopt 1).
dmeventd is 'scanning' statuses in loop (most usually in 10sec
intervals) - and meanwhile it sleeps within:
pthread_cond_timedwait()
However this function call tends to wakeup sometimes a short amount of
time sooner - and our code still believe the 'right time' has not yet
arrived and basically for a moment 'busy-looped' on calling this
function - so for systems with 'clock_gettime()' present we obtain
time and we go 10ms to the future second - this avoids unneeded
repeated invocation of our time scheduling loop.
TODO: monitoring during 1 hour 'time-change'...
When _daemon_read()/_client_read() fails during the read,
ensure memory allocated withing function is also release here
(so caller does not need to care). Also improve code readbility a bit
a for same functionality use more similar code.
Since we fixed linking of proper version of 'libdevmapper' with
linking lvm2 plugin correctly - we already have correct function
available linked with internal lvm library.
So drop unneeded include of parsing function.
When a LV loses an interface it ends up getting removed and recreated.
This happens after the VGs have been processed and updated. Thus when
this happens we need to re-check the VGs.
VDO pool LVs are represented by a new dbus interface VgVdo. Currently
the interface only has additional VDO properties, but when the
ability to support additional LV creation is added we can add a method
to the interface.
This reverts commit ad560a286a0b5d08086324e6194b060c136e9353.
The reverted patch also removed the warning which we realized we need
to keep as valuable process information (see related bugzilla below).
In a followup patch, we'll keep the message and avoid bailing out thus
always allowing lvconvert to try repairing if 'allocate' fault policy set.
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1751887
With Python 3.8 converting these directly to string using str()
no longer works, we need to convert these to integer first.
On Python 3.8:
>>> str(dbus.Int64(1))
'dbus.Int64(1)'
On Python 3.7 (and older):
>>> str(dbus.UInt64(1))
'1'
This is probably related to removing __str__ function from method
from int (dbus.UInt is subclass of int) which happened in 3.8, see
https://docs.python.org/3.8/whatsnew/3.8.html
Signed-off-by: Vojtech Trefny <vtrefny@redhat.com>
To avoid tiny race on checking arrival of signal and entering select
(that can latter remain stuck as signal was already delivered) switch
to use pselect().
If it would needed, we can eventually add extra code for older systems
without pselect(), but there are probably no such ancient systems in
use.
Update the previous commit to leave the vgname as
an arg instead of moving it into the select option,
(the compound select option rule is confusing the
dlm arg processing.)
Using --select 'lvname=LV && vgname=VG' avoids the problem
of the lvchange exit code not distinguishing an actual error
result vs the VG or LV not existing. (This is in case there
is an odd dlm/gfs2 setup where some nodes are running the dlm
but do not have access to the VG.)
When lvextend extends an LV that is active with a shared
lock, use this as a signal that other hosts may also have
the LV active, with gfs2 mounted, and should have the LV
refreshed to reflect the new size. Use the libdlmcontrol
run api, which uses dlm_controld/corosync to run an
lvchange --refresh command on other cluster nodes.
When an LV is active with a shared lock, a command can be
run to change the LV with --lockopt skiplv (to override the
exclusive lock the command ordinarily requires which is not
compatible with the outstanding shared lock.)
In this case, other commands may have the LV active and may
need to refresh the LV, so print warning stating this.
Lvm can at times have duplicate names. When this happens the daemon will
internally use vg_name:vg_uuid as the name for lookups, but display just
the vg_name externally. If an API user uses the Manager.LookUpByLvmId and
queries the vg name they will only get returned one result as the API
can only accommodate returning 1. The one returned is the first instance
found when sorting the volume groups by UUID.
Resolves: https://bugzilla.redhat.com/show_bug.cgi?id=1583510