IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add LV_TEMPORARY flag for LVs with limited existence during command
execution. Such LVs are temporary in way that they need to be activated,
some action done and then removed immediately. Such LVs are just like
any normal LV - the only difference is that they are removed during
LVM command execution. This is also the case for LVs representing
future pool metadata spare LVs which we need to initialize by using
the usual LV before they are declared as pool metadata spare.
We can optimize some other parts like udev to do a better job if
it knows that the LV is temporary and any processing on it is just
useless.
This flag is orthogonal to LV_NOSCAN flag introduced recently
as LV_NOSCAN flag is primarily used to mark an LV for the scanning
to be avoided before the zeroing of the device happens. The LV_TEMPORARY
flag makes a difference between a full-fledged LV visible in the system
and the LV just used as a temporary overlay for some action that needs to
be done on underlying PVs.
For example: lvcreate --thinpool POOL --zero n -L 1G vg
- first, the usual LV is created to do a clean up for pool metadata
spare. The LV is activated, zeroed, deactivated.
- between "activated" and "zeroed" stage, the LV_NOSCAN flag is used
to avoid any scanning in udev
- betwen "zeroed" and "deactivated" stage, we need to avoid the WATCH
udev rule, but since the LV is just a usual LV, we can't make a
difference. The LV_TEMPORARY internal LV flag helps here. If we
create the LV with this flag, the DM_UDEV_DISABLE_DISK_RULES
and DM_UDEV_DISABLE_OTHER_RULES flag are set (just like as it is
with "invisible" and non-top-level LVs) - udev is directed to
skip WATCH rule use.
- if the LV_TEMPORARY flag was not used, there would normally be
a WATCH event generated once the LV is closed after "zeroed"
stage. This will make problems with immediated deactivation that
follows.
A common scenario is during new LV creation when we need to wipe the
newly created LV and avoid any udev scanning before this stage otherwise
it could cause the device (the LV) to be claimed by some other subsystem
for which there were stale metadata within LV data.
This patch adds possibility to mark the LV we're just about to wipe with
a flag that gets passed to udev via DM_COOKIE as a subsystem specific
flag - DM_SUBSYSTEM_UDEV_FLAG0 (in this case the subsystem is "LVM")
so LVM udev rules will take care of handling that.
When the pool is created from non-linear target the more complex rules
have to be used and stacking needs to properly decode args for _tdata
LV. Also proper allocation policies are being used according to those
set in lvm2 metadata for data and metadata LVs.
Also properly check for active pool and extra code to active it
temporarily.
With this fix it's now possible to use:
lvcreate -L20 -m2 -n pool vg --alloc anywhere
lvcreate -L10 -m2 -n poolm vg --alloc anywhere
lvconvert --thinpool vg/pool --poolmetadata vg/poolm
lvresize -L+10 vg/pool
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
When creating a new thin pool and there's no profile requested
via "lvcreate --profile ...", inherit any VG profile if it's attached.
Currently this applies to these settings:
allocation/thin_pool_chunk_size
allocation/thin_pool_discards
allocation/thin_pool_zero
Add --poolmetadataspare option and creates and handles
pool metadata spare lv when thin pool is created.
With default setting 'y' it tries to ensure, spare has
at least the size of created LV.
Also add -k/--setactivationskip y/n and -K/--ignoreactivationskip
options to lvcreate.
The --setactivationskip y sets the flag in metadata for an LV to
skip the LV during activation. Also, the newly created LV is not
activated.
Thin snapsots have this flag set automatically if not specified
directly by the --setactivationskip y/n option.
The --ignoreactivationskip overrides the activation skip flag set
in metadata for an LV (just for the run of the command - the flag
is not changed in metadata!)
A few examples for the lvcreate with the new options:
(non-thin snap LV => skip flag not set in MDA + LV activated)
raw/~ $ lvcreate -l1 vg
Logical volume "lvol0" created
raw/~ $ lvs -o lv_name,attr vg/lvol0
LV Attr
lvol0 -wi-a----
(non-thin snap LV + -ky => skip flag set in MDA + LV not activated)
raw/~ $ lvcreate -l1 -ky vg
Logical volume "lvol1" created
raw/~ $ lvs -o lv_name,attr vg/lvol1
LV Attr
lvol1 -wi------
(non-thin snap LV + -ky + -K => skip flag set in MDA + LV activated)
raw/~ $ lvcreate -l1 -ky -K vg
Logical volume "lvol2" created
raw/~ $ lvs -o lv_name,attr vg/lvol2
LV Attr
lvol2 -wi-a----
(thin snap LV => skip flag set in MDA (default behaviour) + LV not activated)
raw/~ $ lvcreate -L100M -T vg/pool -V 1T -n thin_lv
Logical volume "thin_lv" created
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg
LV Attr
pool twi-a-tz-
thin_lv Vwi-a-tz-
thin_snap Vwi---tz-
(thin snap LV + -K => skip flag set in MDA (default behaviour) + LV activated)
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap -K
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg/thin_lv
LV Attr
thin_lv Vwi-a-tz-
(thins snap LV + -kn => no skip flag in MDA (default behaviour overridden) + LV activated)
[0] raw/~ # lvcreate -s vg/thin_lv -n thin_snap -kn
Logical volume "thin_snap" created
[0] raw/~ # lvs -o name,attr vg/thin_snap
LV Attr
thin_snap Vwi-a-tz-
Start separating the validation from the action in the basic lvresize
code moved to the library.
Remove incorrect use of command line error codes from lvresize library
functions. Move errors.h to tools directory to reinforce this,
exporting public versions of the error codes in lvm2cmd.h for dmeventd
plugins to use.
The pv resize code required that a lvm_vg_write be done
to commit the change. When the method to add the ability
to list all PVs, including ones that are not assocated with
a VG we had no way for the user to make the change persistent.
Thus additional resize code was move and now liblvm calls into
a resize function that does indeed write the changes out, thus
not requiring the user to explicitly write out he changes.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
As locks are held, you need to call the included function
to release the memory and locks when done transversing the
list of physical volumes.
V2: Rebase fix
V3: Prevent VGs from getting cached and then write protected.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Simplified version of lv resize.
v3: Rebase changes to make work. Needed to set sizeargs = 1
to indicate to resize that we are asking for a size based
resize.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
If "vgcreate/lvcreate --profile <profile_name>" is used, the profile
name is automatically stored in metadata for making it possible to
load it automatically next time the VG/LV is used.
Do not keep multiple archives for the executed command.
Reuse the ALLOCATABLE_PV from pv status for
ARCHIVED_VG vg status. Mark VG with the bit with the
first archivation.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
The pv_by_path might be also dangerous to use as it does not
count with any other metadata areas but the ones found on the PV
itself. If metadata was not found on the PV referenced by the path,
it returned no PV though it might have been referenced by metadata
elsewhere (on other PVs...).
Before, the find_pv_by_name call always failed if the PV found was orphan.
However, we might use this function even for a PV that is not part of any VG.
This patch adds 'allow_orphan' arg to find_pv_by_name fn that allows that.
Keep the flag whether given thin pool argument has been given on command
line or it's been 'estimated'
Call of update_pool_params() must not change cmdline given args and
needs to know this info.
Since there is a need to move this update function into /lib, we cannot
use arg_count().
FIXME: we need some generic mechanism here.
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
PV header extension comes just beyond the existing PV header base:
PV header base (existing):
- uuid
- device size
- null-terminated list of Data Areas
- null-terminater list of MetaData Areas
PV header extension:
- extension version
- flags
- null-terminated list of Embedding Areas
This patch also adds "eas" (Embedding Areas) list to lvmcache (lvmcache_info)
and it also adds support for common operations on the list (just like for
already existing "das" - Data Areas list):
- lvmcache_add_ea
- lvmcache_update_eas
- lvmcache_foreach_ea
- lvmcache_del_eas
Also, add ea_start and ea_size to struct physical_volume for processing
PV Embedding Area location throughout the code (currently only one
Embedding Area is supported, though the definition on disk allows for
more if needed in the future...).
Also, define FMT_EAS format flag to mark that the format actually
supports Embedding Areas (currently format-text only).
Extract restorable PV creation parameters from struct pvcreate_params into
a separate struct pvcreate_restorable_params for clarity and also for better
maintainability when adding any new items later.
Currently it is impossible to remove a failed PV which has a RAID LV
on it. This patch fixes the issue by replacing the failed PV with an
'error' segment within the affected sub-LVs. Once there is no longer
a RAID LV using the PV, it can be removed.
Most often, it is better to replace a failed RAID device with a spare.
(You can use 'lvconvert --repair <vg>/<LV>' to accomplish that.)
However, if there are no spares in the volume group and none will be
added, it is useful to be able to removed the failed device.
Following patches address the ability to perform 'lvconvert' operations
on RAID LVs that contain sub-LVs composed of 'error' segments.
We have been using 'mirror_region_size' in lvm.conf as the default region
size for RAID logical volumes as well as mirror logical volumes. Since,
"raid" is more inclusive and representative than "mirror", I have changed
the name of this setting. We must still check for the old setting and warn
the user if we are overriding it with the new setting if both happen to be
present.
Target tells us its version, and we may allow different set of options
to be supported with different version of driver.
Idea is to provide individual feature flags and later be
able to query for them.
The 'copy_percent' function takes the 'extents_copied' field from each
segment in an LV to create the numerator for the ratio that is to
become the copy_percent. (Otherwise known as the 'sync' percent for
non-pvmove uses, like mirror LVs and RAID LVs.) This function safely
works on RAID - not just mirrors - so it is better to have it in
lv_manip.c rather than mirror.c.
There's a lot of different functions that do a lot of different things
in lv_manip.c, so I placed the function near a function in lv_manip.c
that it was close to in metadata-exported.h. Different placement in the
file or a different name for the function may be useful.