IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The error buffer will stack error messages which is fine. However,
once you retrieve the error messages it doesn't make sense to keep
appending for each additional error message when running in the
context of a library call.
This patch clears and resets the buffer after the user retrieves
the error message.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Add a PV create which takes a paramters object that
has get/set method to configure PV creation.
Current get/set operations include:
- size
- pvmetadatacopies
- pvmetadatasize
- data_alignment
- data_alignment_offset
- zero
Reference: https://bugzilla.redhat.com/show_bug.cgi?id=880395
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Replace the code with the refactored vgreduce_single instead
of calling its own implementation.
Corrects bug: https://bugzilla.redhat.com/show_bug.cgi?id=989174
Signed-off-by: Tony Asleson <tasleson@redhat.com>
Moving the core functionality of vgreduce single into
lib/metadata/vg.c so that the command line and lvm2app library
can call the same core functionality. New function is
vgreduce_single.
Signed-off-by: Tony Asleson <tasleson@redhat.com>
All labellers always use the "private" (void *) field as the fmt pointer. Making
this fact explicit in the type of the labeller simplifies the label reporting
code which needs to extract the format. Moreover, it removes a number of
error-prone casts from the code.
Fix buggy usage of "" (empty string) as a numerical string
value used for sorting.
On intel 64b platform this was typically resolve
as 0xffffff0000000000 - which is already 'close' to
UINT64_MAX which is used for _minusone64.
On other platforms it might have been giving
different numbers depends on aligment of strings.
Use proper &_minusone64 for sorting value when the reported
value is NUM.
Note: each numerical value needs to be thought about if it needs
default value &_zero64 or &_minusone64 since for cases, were
value of zero is valid, sorting should not be mixing entries
together.
Add wrapper function for dm_report_field_set_value() which returns void
and return 1, so the code could be shorter.
Add wrapper function for percent display _field_set_percent().
This patch fixes mostly cluster behavior but also updates
non-cluster reaction where calls like 'lvchange -aln'
lead to incorrect errors for some segment types.
Fix the implicit activation rules where some segment types could
be activated only in exclusive mode in cluster.
lvm2 command was not preserver 'local' property and incorrectly
converted local activations in to plain exclusive, so the local
activation could have activate volumes exclusively, but remotely.
If the volume_list filters out volume from activation,
it is still success result for this function.
Change the error message back to verbose level.
Detect if the volume is active localy before zeroing,
so we report error a bit later for cases, where volume
could not be activated because it doesn't pass through volume
list (but user still could create volume when he disables
zeroing)
Correct return code of activate_lv_excl().
Function is not supposed to return activation state of
activated volume, but return code of the operation.
Since i.e. when activation filter is allowing to activate
volume on current system, it is still success even though
no volume is activated.
There is a problem with the way mirrors have been designed to handle
failures that is resulting in stuck LVM processes and hung I/O. When
mirrors encounter a write failure, they block I/O and notify userspace
to reconfigure the mirror to remove failed devices. This process is
open to a couple races:
1) Any LVM process other than the one that is meant to deal with the
mirror failure can attempt to read the mirror, fail, and block other
LVM commands (including the repair command) from proceeding due to
holding a lock on the volume group.
2) If there are multiple mirrors that suffer a failure in the same
volume group, a repair can block while attempting to read the LVM
label from one mirror while trying to repair the other.
Mitigation of these races has been attempted by disallowing label reading
of mirrors that are either suspended or are indicated as blocking by
the kernel. While this has closed the window of opportunity for hitting
the above problems considerably, it hasn't closed it completely. This is
because it is still possible to start an LVM command, read the status of
the mirror as healthy, and then perform the read for the label at the
moment after a the failure is discovered by the kernel.
I can see two solutions to this problem:
1) Allow users to configure whether mirrors can be candidates for LVM
labels (i.e. whether PVs can be created on mirror LVs). If the user
chooses to allow label scanning of mirror LVs, it will be at the expense
of a possible hang in I/O or LVM processes.
2) Instrument a way to allow asynchronous label reading - allowing
blocked label reads to be ignored while continuing to process the LVM
command. This would action would allow LVM commands to continue even
though they would have otherwise blocked trying to read a mirror. They
can then release their lock and allow a repair command to commence. In
the event of #2 above, the repair command already in progress can continue
and repair the failed mirror.
This patch brings solution #1. If solution #2 is developed later on, the
configuration option created in #1 can be negated - allowing mirrors to
be scanned for labels by default once again.
Add LV_TEMPORARY flag for LVs with limited existence during command
execution. Such LVs are temporary in way that they need to be activated,
some action done and then removed immediately. Such LVs are just like
any normal LV - the only difference is that they are removed during
LVM command execution. This is also the case for LVs representing
future pool metadata spare LVs which we need to initialize by using
the usual LV before they are declared as pool metadata spare.
We can optimize some other parts like udev to do a better job if
it knows that the LV is temporary and any processing on it is just
useless.
This flag is orthogonal to LV_NOSCAN flag introduced recently
as LV_NOSCAN flag is primarily used to mark an LV for the scanning
to be avoided before the zeroing of the device happens. The LV_TEMPORARY
flag makes a difference between a full-fledged LV visible in the system
and the LV just used as a temporary overlay for some action that needs to
be done on underlying PVs.
For example: lvcreate --thinpool POOL --zero n -L 1G vg
- first, the usual LV is created to do a clean up for pool metadata
spare. The LV is activated, zeroed, deactivated.
- between "activated" and "zeroed" stage, the LV_NOSCAN flag is used
to avoid any scanning in udev
- betwen "zeroed" and "deactivated" stage, we need to avoid the WATCH
udev rule, but since the LV is just a usual LV, we can't make a
difference. The LV_TEMPORARY internal LV flag helps here. If we
create the LV with this flag, the DM_UDEV_DISABLE_DISK_RULES
and DM_UDEV_DISABLE_OTHER_RULES flag are set (just like as it is
with "invisible" and non-top-level LVs) - udev is directed to
skip WATCH rule use.
- if the LV_TEMPORARY flag was not used, there would normally be
a WATCH event generated once the LV is closed after "zeroed"
stage. This will make problems with immediated deactivation that
follows.
This patch reinstates the lv_info call to check for open count of
the LV we're removing/deactivating - this was changed with commit 125712b
some time ago and we relied on the ioctl retry logic deeper in the libdm
while calling the exact 'remove' ioctl.
However, there are still some situations in which it's still required to
check for open count before we do any 'remove' actions - this mainly
applies to LVs which consist of several sub LVs, like it is for
virtual snapshot devices.
The commit 1146691 fixed the issue with ordering of actions during
virtual snapshot removal while the snapshot is still open. But
the check for the open status of the snapshot is still prone to
marking the snapshot as in use with an immediate exit even though
this could be a temporary asynchronous open only, most notably
because of udev and its WATCH udev rule with accompanying scans
for the event which is asynchronous. The situation where this crops
up most often is when we're closing the LV that was open for read-write
and then calling lvremove immediately.
This patch reinstates the original lv_info call for the open status
of the LV in the lv_check_not_in_use fn that gets called before
we do any LV removal/deactivation. In addition to original logic,
this patch adds its own retry loop with a delay (25x0.2 seconds)
besides the existing ioctl retry loop.
Component LVs of a thinpool can be RAID LVs. Users who attempt a
scrubbing operation directly on a thinpool will be prompted to
specify the sub-LV they wish the operation to be performed on. If
neither of the sub-LVs are RAID, then a message telling them that
the operation can only be performed on a RAID LV will be given.
Split image should have an out-of-sync attr ('I') - always. Even if
the RAID LV has not been written to since the LV was split off, it is
still not part of the group that makes up the RAID and is therefore
"out-of-sync".
Since the virtual snapshot has no reason to stay alive once we
detach related snapshot - deactivate whole thing in front of
snapshot removal - otherwice the code would get tricky for
support in cluster.
The correct full solution would require to have transactions
for libdm operations.
Also enable to the check for snapshot being opened prior
the origin deactivation, otherwise we could easily end
with the origin being deactivate, but snapshot still kept
active, desynchronizing locking state in cluster.
Addendum to commit ce7489e which introduced a new *internal* LV_NOSCAN
flag and so it needs to be marked that way properly otherwise it
ends up unrecognized and improperly handled during metadata export.
A common scenario is during new LV creation when we need to wipe the
newly created LV and avoid any udev scanning before this stage otherwise
it could cause the device (the LV) to be claimed by some other subsystem
for which there were stale metadata within LV data.
This patch adds possibility to mark the LV we're just about to wipe with
a flag that gets passed to udev via DM_COOKIE as a subsystem specific
flag - DM_SUBSYSTEM_UDEV_FLAG0 (in this case the subsystem is "LVM")
so LVM udev rules will take care of handling that.
Accept --ignoreskippedcluster with pvs, vgs, lvs, pvdisplay, vgdisplay,
lvdisplay, vgchange and lvchange to avoid the 'Skipping clustered
VG' errors when requesting information about a clustered VG
without using clustered locking and still exit with success.
The messages can still be seen with -v.
Some code has been added recently which makes it impossible to compile
when "configure --disable-devmapper" is used. This patch just shuffles
the code around so it's under proper #ifdef DEVMAPPER_SUPPORT.
lib/metadata/lv_manip.c:_sufficient_pes_free() was calculating the
required space for RAID allocations incorrectly due to double
accounting. This resulted in failure to allocate when available
space was tight.
When RAID data and metadata areas are allocated together, the total
amount is stored in ah->new_extents and ah->alloc_and_split_meta is
set. '_sufficient_pes_free' was adding the necessary metadata extents
to ah->new_extents without ever checking ah->alloc_and_split_meta.
This often led to double accounting of the metadata extents. This
patch checks 'ah->alloc_and_split_meta' to perform proper calculations
for RAID.
This error is only present in the function that checks for the needed
space, not in the functions that do the actual allocation.
If "default" thin pool chunk size calculation method is selected,
use minimum_io_size, otherwise optimal_io_size for "performance"
device hint exposed in sysfs. If there appear to be PVs with
different hints presented, use their least common multiple.
If the hint is less than the default value defined for the
calculation method, use the default value instead.
Add allocation/thin_pool_chunk_size_calculation lvm.conf
option to select a method for calculating thin pool chunk
sizes and define two possible values - "default" and "performance".
A previous commit (b6bfddcd0a) which
was designed to prevent segfaults during lvextend when trying to
extend striped logical volumes forgot to include calculations for
RAID4/5/6 parity devices. This was causing the 'contiguous' and
'cling_by_tags' allocation policies to fail for RAID 4/5/6.
The solution is to remember that while we can compare
ah->area_count == prev_lvseg->area_count
for non-RAID, we should compare
(ah->area_count + ah->parity_count) == prev_lvseg->area_count
for a general solution.
When NULL info struct is passed in - function is usable
as a quick query for lv_is_active_locally() - with a bonus
we may query for layered device.
So it could be seen as a more efficient lv_is_active_locally().
Add internal devtypes reporting command to display built-in recognised
block device types. (The output does not include any additional
types added by a configuration file.)
> lvm devtypes -o help
Device Types Fields
-------------------
devtype_all - All fields in this section.
devtype_name - Name of Device Type exactly as it appears in /proc/devices.
devtype_max_partitions - Maximum number of partitions. (How many device minor numbers get reserved for each device.)
devtype_description - Description of Device Type.
> lvm devtypes
DevType MaxParts Description
aoe 16 ATA over Ethernet
ataraid 16 ATA Raid
bcache 1 bcache block device cache
blkext 1 Extended device partitions
...
Older gcc is giving misleading warning:
metadata/lv_manip.c:4018: warning: ‘seg’ may be used uninitialized in
this function
But warning free compilation is better.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
When images and their associated metadata are removed from a RAID1 LV,
the remaining sub-LVs are "shifted" down to fill the gaps. For
example, if there is a 3-way mirror:
[0][1][2]
and we remove device#0, the devices will be shifted down
[1][2]
and renamed.
[0][1]
This can create a problem for resume_lv (specifically,
dm_tree_activate_children) during the renaming process though. This
is because it will attempt to rename the higher indexed sub-LVs first
and find that it cannot because there are currently other sub-LVs with
that name. The solution is to check for a conflicting name before
attempting to rename. If a conflict is found and that conflicting
sub-LV is also in the process of renaming, we can defer the current
rename until the conflicting sub-LV has renamed and cleared the
conflict.
Now that resume_lv can handle these types of rename conflicts, we can
remove the workaround in RAID that was attempting to resume a RAID1
LV from the bottom-up in order to force a proper rename in assending
order before attempting a resume on the top-level LV. This "hack"
only worked for single machine use-cases of LVM. Clearing this up
paves the way for exclusive activation of RAID LVs in a cluster.
Properly skip unmonitoring of thin pool volume in deactivation code
path. Code makes sure if there is just any thin pool user
it stays monitored with all its resources.
When the pool is created from non-linear target the more complex rules
have to be used and stacking needs to properly decode args for _tdata
LV. Also proper allocation policies are being used according to those
set in lvm2 metadata for data and metadata LVs.
Also properly check for active pool and extra code to active it
temporarily.
With this fix it's now possible to use:
lvcreate -L20 -m2 -n pool vg --alloc anywhere
lvcreate -L10 -m2 -n poolm vg --alloc anywhere
lvconvert --thinpool vg/pool --poolmetadata vg/poolm
lvresize -L+10 vg/pool
The pool metadata LV must be accounted for when determining what PVs
are in a thin-pool. The pool LV must also be accounted for when
checking thin volumes.
This is a prerequisite for pvmove working with thin types.
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
This is a regression caused by commit 3bd9048854.
The error message added with that commit "mpath major %d is not dm major %d" is
superfluous.
When scanning for mpath components, we're looking for a parent device.
But this parent device is not necessarily an mpath device (so the dm device)
if it exists - it can be any other device layered on top (e.g. an MD RAID device).
- null_fd resource leak on error path in _reopen_fd_null fn
- dead code in verify_message in clvmd code
- dead code in _init_filter_components in toolcontext code
- null dereference in dm_prepare_selinux_context on error path if
setfscreatecon fails while resetting SELinux context
Split out the partitioned device filter that needs to open the device
and move the multipath filter in front of it.
When a device is multipathed, sending I/O to the underlying paths may
cause problems, the most obvious being I/O errors visible to lvm if a
path is down.
Revert the incorrect <backtrace> messages added when a device doesn't
pass a filter.
Log each filter initialisation to show sequence.
Avoid duplicate 'Using $device' debug messages.
According to bug 995193, if a volume group
1) contains a mirror
2) is clustered
3) 'locking_type' = 0 is used
then it is not possible to remove the 'c'luster flag from the VG. This
is due to the way _lv_is_active behaves.
We shouldn't allow the cluster flag to be flipped unless the mirrors in
the cluster are not active. This is because different kernel modules
are used depending on whether a mirror is cluster or not. When we
attempt to see if the mirror is active, we first check locally. If it
is not, then we attempt to check for remotely active instances if the VG
is clustered. Since the no_lock locking type is LCK_CLUSTERED, but does
not implement 'query_resource', remote_lock_held will always return an
error in this case. An error from remove_lock_held is treated as though
the lock _is_ held (i.e. the LV is active remotely). This blocks the
cluster flag from changing.
The solution is to implement 'query_resource' for the no_lock type. It
will report a message and return 1. This will allow _lv_is_active to
function properly. The LV would be considered not active remotely and
the VG can change its flag.