IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
There is no need to differentiation between clustered VG and normal VG.
As the activation depends on locking type.
Use unconditionally locally exclusive activation for pvmove.
When activation of LVs fails prior pvmove start, try to deactivate
already activated LVs.
TODO: possibly remember which LVs where already activate and only those
take down - devices which are already in-use will stay active.
Activation lock has a primary purpose to serialize locking of individual
LV in case there is no other protecting mechanism for parallel
execution.
However in the case an activated LV is composed from several other LVs,
noone should be able to manipulate with those LVs as well.
This patch add a very 'naive' global VG activation locking in this case.
In the future we may introduce smarter function detecting minimal closed
graph components if this will appear as bottleneck
Patch checks if the VG Write lock is held - in this case we do not
need any more locking - command has exclusive access to VG.
In case we have clustered VG and we are activating an LV which does not
need other LVs - we also do not need any more locks.
In all other cases take respective lock - for single LV - use lvid,
for complex LVs use vgname.
In a shared VG, lvconvert must be used to create thin pools
and cache pools, not the lvcreate variants of those commands.
Deny these cases early in lvcreate using the new command defs.
Denying these cases deeper in the code was missing some
cleanup of the partially completed command.
Revert the lvmlockd.c changes from:
commit 0bf836aa14
"tidy: prefer not using else after return"
The commit introduced at least one regression, which broke
lvcreate of a thin pool in a shared VG.
After the internal lvmlock LV (holding sanlock leases) is
extended to hold more leases, it needs to be zeroed.
sanlock expects to see either zeroed blocks or blocks
initialized with leases.
Some lvconvert commands can be used directly on the data sublv:
lvconvert ... vg/pool_tdata
The correct LV lock to use in lvmlockd is the one on the pool LV.
If the VG holding the global lock is removed, we can indicate
that as the reason for not being able to acquire the global
lock in subsequent error messages, and can suggest enabling
the global lock in another VG. (This helpful error message
will go away if the global lock is enabled in another VG,
or if lvmlockd is restarted.)
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
This reverts commit fa69ed0bc8.
This code sometimes expects to be presented with a read-only filesystem
(during some boot sequences for example) and copes appropriately with
this and it should not lead to expected error messages that might cause
unnecessary alarm.
lv_name arg is only used without known LV for resolving '*lv'.
Once we know *lv, never use lv_name ever again.
So setting it when passing *lv has not needed.
Use common API design and pass just LV pointer to lv_manip.c functions.
Read cmd struct via lv->vg->cmd when needed.
Also do not try to return EINVALID_CMD_LINE error when we
have already openned VG - this error code can only be returned before
locking VG.
If 'vgcreate --shared' finds both sanlock and dlm are running,
print a more accurate error message:
"Found multiple lock managers, select one with --lock-type."
When neither is running, we still print:
"Failed to detect a running lock manager to select lock type."
vgchange --lock-type iterates through LVs to ensure
no LVs are active before changing the lock type of
the VG, but the loop was not checking that an LV
actually has a lock before trying it, so it would
fail if the VG had any LVs that don't use locks,
e.g it would fail on a tmeta LV from a pool.
This applies the same rule/logic to dlm VGs that has always
existed for sanlock VGs. Allowing a dlm VG to be removed
while its lockspace was still running on other hosts largely
worked, but there were difficult problems if another VG with
the same name was recreated. Forcing the VG lockspace to
be stopped, gives both sanlock and dlm VGs the same behavior.
Add a new arg to lockd_start_vg() that indicates
it is being called for a new lockd VG, so that
lvmlockd knows the lockspace being started is new.
(Will be used by a following commit.)
This was only used to return two flags indicating specific
reasons for a lock failure so that a more specific error
message could be printed by the command (lockspace had been
stopped, or lockspace had an error starting.)
Remove the list, given its limited usefulness, the fact it
would easily become inaccurate, and the fact it was causing
misleading error messages. The error conditions it was meant
to help could be reported differently.