IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
All these functions are now used as utilities,
e.g. for ioctl (not for io), and need to
open/close the device each time they are called.
(Many of the opens can probably be eliminated by
just using the bcache fd for the ioctl.)
with the --labelsector option. We probably don't
need all this code to support any value for this
option; it's unclear how, when, why it would be
used.
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
The clvmd saved_vg data is independent from the normal lvm
lvmcache vginfo data, so separate saved_vg from vginfo.
Normal lvm doesn't need to use save_vg at all, and in clvmd,
lvmcache changes on vginfo can be made without worrying
about unwanted effects on saved_vg.
To avoid the chance of freeing a saved vg while another
code path is using it, defer freeing saved vgs until
all the lvmcache content is dropped for the vg.
In case "lvconvert -mN RaidLV" was used on a degraded
raid1 LV, success was returned instead of an error.
Provide message to inform about the need to repair first
before changing number of mirrors and exit with error.
Add new lvconvert-m-raid1-degraded.sh test.
Resolves: rhbz1573960
I don't like having this in a common header because it means you end
up including too much and causing unneccessary dependencies. eg,
lib/misc/lib.h includes libdevmapper.h, internationalisation, and
logging stuff.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
The mixed up vg repair code in vg_read was trying
to repair a vg when vg_read was called by clvmd.
The clvmd daemon isn't supposed to be repairing
or writing a vg.
(This is a temporary workaround; vg repair will soon
be pulled out of vg_read so it can be called in a
controlled way and consolidated instead of spread
around.)
Shift refresh of mirror table right into monitor_dev_for_events().
Use !vg_write_lock_held() to recognize use of lvchange/vgchange.
(this shall change if this would no longer work, but requires
futher some API changes).
With this patch dm mirror table is only refreshed when necassary.
Also update WARNING message about mirror usage without monitoring
and display LV name.
bcache_invalidate() now returns a bool to indicate success. If fails
if the block is currently held, or the block is dirty and writeback
fails.
Added a bunch of unit tests for the invalidate functions.
Fixed some bugs to do with invalidating errored blocks.
In some pvmove tests, clvmd uses the new (precommitted)
saved_vg, but then requests the old saved_vg, and
expects that the new saved_vg be returned instead of
the old. So, when returning the new saved_vg, forget
the old one so we don't return it again.
The filters save information about devices that should
be ignored, so if we need to repeat a scan (unusual,
but happens in clvmd), we need to update the filters.
When clvmd does a full label scan just prior to
calling _vg_read(), pass a new flag into _vg_read
to indicate that the normal rescan of VG devs is
not needed.
After reading a VG, stash it in lvmcache as "saved_vg".
Before reading the VG again, try to use the saved_vg.
The saved_vg is dropped on VG lock operations.
The copy of the VG which clvmd stashes in lvmcache should
not only be used between suspend and resume, but between
sequential LV operations in clvmd, so that clvmd does not
need to reread the VG for each one. Prepare for that by
renaming the stashed VG as "saved_vg".
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Don't allow writes in test mode. test mode should be
more sophisticated than just faking writes, and this
should be a last defense for cases where test mode is
not being checked correctly.
Recent changes allow some major simplification of the way
lvmcache works and is used. lvmcache_label_scan is now
called in a controlled fashion at the start of commands,
and not via various unpredictable side effects. Remove
various calls to it from other places. lvmcache_label_scan
should not be called from anywhere during a command, because
it produces an incorrect representation of PVs with no MDAs,
and misclassifies them as orphans. This has been a long
standing problem. The invalid flag and rescanning based on
that is no longer used and removed. The 'force' variation is
no longer needed and removed.
We can't let clvmd keep all scanned devs open,
which prevents them from being removed. So
drop the bcache data (and close fds) affter
doing a label scan.
Also set up bcache before the clvm-specific
vg_read (which needs to rescan the vg's devs
using bcache) and destroy the bcache after.
The error handling code wasn't working, but it
appears that just removing it is what we need.
The doesn't really need any different behavior
related to bcache blocks on an io error, it just
wants to know if there was an error.
In some odd cases (e.g. tests) there are very few devices
which results in creating too few blocks in bcache, so
create bcache with a minimum number of blocks.
Commands using lvmetad will not begin with a proper
label_scan which initializes bcache, but may later
decide they need to scan a set of devs, in which case
they'll need bcache set up at that point.
The improved detection of bad metadata when scanning
(where errors were ignored before) means we now have to
override some errors when forcibly erasing damaged metadata.
Drop an extra label scan in the recovery part
of vg_read. This is a temporary improvement
until the pending replacement for the broken
recovery code burried in vg_read.
This is a temporary hacky workaround to the problem of
reads going through bcache and writes not using bcache.
The write path wants to read parts of data that it is
incrementally writing to disk, but the reads (using
bcache) don't work because the writes are not in the
bcache. For now, add a dev to bcache before each attempt
to read it in case it's being used on the write path.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
When process_each_pv() calls vg_read() on the orphan VG, the
internal implementation was doing an unnecessary
lvmcache_label_scan() and two unnecessary label_read() calls
on each orphan. Some of those unnecessary label scans/reads
would sometimes be skipped due to caching, but the code was
always doing at least one unnecessary read on each orphan.
The common format_text case was also unecessarily calling into
the format-specific pv_read() function which actually did nothing.
By analyzing each case in which vg_read() was being called on
the orphan VG, we can say that all of the label scans/reads
in vg_read_orphans are unnecessary:
1. reporting commands: the information saved in lvmcache by
the original label scan can be reported. There is no advantage
to repeating the label scan on the orphans a second time before
reporting it.
2. pvcreate/vgcreate/vgextend: these all share a common
implementation in pvcreate_each_device(). That function
already rescans labels after acquiring the orphan VG lock,
which ensures that the command is using valid lvmcache
information.