IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If it obtains the data, it passes it into the supplied callback function
and returns 1. Otherwise the callback receives failed = 1.
Updated config_file_read_fd to use this and similarly return the data
via a callback fn of its own.
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
The creation of wrapped around metadata - where the start of metadata is
written up to the end of the buffer and the remainder follows back at
the start of the buffer - is now restricted to cases where writing the
metadata in one piece wouldn't fit. This shouldn't happen in 'normal'
usage so let's begin treating the code for this as a special case that
can be ignored when optimising 'normal' cases.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
- Use 'lvmcache' consistently instead of 'metadata cache'
- Always use 5 characters for source line number
- Remember to convert uuids into printable form
- Use <no name> rather than (null) when VG has no name.
Add "size" and "size_seqno" to struct device to cache device's size
and also to control its lifetime - the cached value is valid as long
as the global _dev_size_seqno is equal to the device's size_seqno,
otherwise we need to get the size again and cache the new value.
This patch also adds new dev_size_seqno_inc() fn for the appropriate
parts of the code to increment current global value of _dev_size_seqno
and hence to cause all currently cached values for device sizes to
be invalidated.
The device size is now cached because we're planning to reuse this
information for further checks and we want to avoid checking it more
than necessary to save resources.
The list of strings is used quite frequently and we'd like to reuse
this simple structure for report selection support too. Make it part
of libdevmapper for general reuse throughout the code.
This also simplifies the LVM code a bit since we don't need to
include and manage lvm-types.h anymore (the string list was the
only structure defined there).
If there is no define for BLKPBSZGET - we have hard time how to
decrypt physical block size - we can't use here block_size,
since this is usually 4k while we need to use 512b.
FIXME: find some better way, until that enforce value 512.
Eventually we could also try to put in:
+#ifndef BLKPBSZGET
+# define BLKPBSZGET _IO(0x12,123)
+#endif
but this will still not work well on old kernels.
There's no need to have the device open RW while obtaining the readahead value.
The RW open used before caused the CHANGE udev event to be generated if the
WATCH udev rule was set for the underlying device (and that is normally the
case both for non-dm and dm devices by default).
This did not cause any problems before since we were not interested in
*underlying* devices. However, with upcoming changes (autoactivation), we're
watching for events on underlying devices marked as PVs and such a spurious
event could cause the autoactivation code to be triggered. So when trying
to deactivate the volume, we could end up with immediate activation just after
that because of the CHANGE event originated in the WATCH udev rule since the
underlying device was open RW during the deactivation process.
Though maybe a better solution would be to completely filter such spurious
events out of the autoactivation process somehow, it's still useful if there
are as least spurious events generated as possible in the system itself.
Since the function dev_close() has code path, which really could close
file (for unlocked vg) and destroy dev handler, stay on safe side and move
the close few lines later, even our current use case shouldn't trigger
such scenario.
Since the !(dev->flags & DEV_REGULAR) code path just called
dev_name_confirmed() which has just called 'stat()' inside,
remove duplicate second stat() call here.
Before, we used vg_write_lock_held call to determnine the way a device is
opened. Unfortunately, this opened many devices in RW mode when it was not
really necessary. With the OPTIONS+="watch" rule used in the udev rules,
this could fire numerous events while closing such devices (and it caused
useless scans from within udev rules in return).
A common bug we hit with this was with the lvremove command which was unable
to remove the LV since it was being opened from within the udev rules. This
patch should minimize such situations (at least with respect to LVM handling
of devices).
Though there's still a possibility someone will open a device 'outside' in
parallel and fire the event based on the watch rule when closing a device
once opened for RW.
New strategy for memory locking to decrease the number of call to
to un/lock memory when processing critical lvm functions.
Introducing functions for critical section.
Inside the critical section - memory is always locked.
When leaving the critical section, the memory stays locked
until memlock_unlock() is called - this happens with
sync_local_dev_names() and sync_dev_names() function call.
memlock_reset() is needed to reset locking numbers after fork
(polldaemon).
The patch itself is mostly rename:
memlock_inc -> critical_section_inc
memlock_dec -> critical_section_dec
memlock -> critical_section
Daemons (clmvd, dmevent) are using memlock_daemon_inc&dec
(mlockall()) thus they will never release or relock memory they've
already locked memory.
Macros sync_local_dev_names() and sync_dev_names() are functions.
It's better for debugging - and also we do not need to add memlock.h
to locking.h header (for memlock_unlock() prototyp).
When we are stacking LV over device, which has for some reason
increased read_ahead (e.g. MD RAID), the read_ahead hint
for libdevmapper is wrong (it is zero).
If the calculated read_ahead hint is zero, patch uses read_ahead of underlying device
(if first segment is PV) when setting DM_READ_AHEAD_MINIMUM_FLAG.
Because we are using dev-cache, it also store this value to cache for future use
(if several LVs are over one PV, BLKRAGET is called only once for underlying device.)
This should fix all the reamining problems with readahead mismatch reported
for DM over MD configurations (and similar cases).
* lib/device/dev-io.c (dev_open_flags):
Use log_sys_error after failed stat to report strerror(errno).
Use a slightly different diagnostic to report mismatched device number.
Additional verbosity level -vvvv includes line numbers and backtraces.
Verbose messages now go to stderr not stdout.
Close any stray file descriptors before starting.
Refine partitionable checks for certain device types.
Allow devices/types to override built-ins.
Clear many compiler warnings (i386) & associated bugs - hopefully without
introducing too many new bugs:-) (Same exercise required for other archs.)
Default compilation has optimisation - or else use ./configure --enable-debug
Lots of changes/very little testing so far => there'll be bugs!
Use 'vgcreate -M text' to create a volume group with its metadata stored
in text files. Text format metadata changes should be reasonably atomic,
with a (basic) automatic recovery mechanism if the system crashes while a
change is in progress.
Add a metadata section to lvm.conf to specify multiple directories if
you want (recommended) to keep multiple copies of the metadata (eg on
different filesystems).
e.g. metadata {
dirs = ["/etc/lvm/metadata1","/usr/local/lvm/metadata2"]
}
Plenty of refinements still in the pipeline.
Patrick, can you see if this fixes your cluster syncing problem please ?
If so I'll make it so it only syncs if you have actually written to the
device.
This should be a rare occurrence so the aim is to recover if it's
straightforward to do so, otherwise just to abort the operation.
If people *knowingly* change device names, they should always run vgscan
afterwards.
A few bytes of memory gets leaked inside a pool each time an alias
has to be discarded - it's not worth restructuring the code to reuse it.
More of LVM2 needs updating to pass device objects (or uuids) about
instead of pathnames so that resolution of pathname->object only happens
once per operation.
dev_cache_get() should now always return the *current* device at the path given
dev_name_confirmed() replaces dev_name() whenever it's important to
know that name for the device is still current (ie when opening it).
If the cache doesn't know a current name, the function fails.
dev_open() guarantees that the file descriptor returned is for the dev_t
of the device structure it was passed.