IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If the lvcreate may decide some automagical values for a user,
try to keep the pool metadata size into 128MB range for optimal
perfomance (as suggested by Joe).
So if the pool metadata size and chunk_size were not specified,
try to select such values they would fit into 128MB size.
Use thin_dump --repair suggestion in log error message
and use just warning on deactivation path without repair info
(since node has been deactivated).
Also check whether there is not 16 args for thin_check configured.
Avoid using NULL pointers from udev. It seems like some older versions of udev
were improperly returning NULL in some case, so do not silently break here,
and give at least a warning to the user.
if the thin_check fail on thin pool - still return successful deactivation,
since lvremove would currently fail.
TODO: find some way to not run check with lvremove.
Use libdm callback to execute thin_check before activation
thin pool and after deactivation as well.
Supporting thin_check_executable which may pass in extra options for
the tool.
If no size was give the later added minimal size check efectively
disable this code. Also the argument for size now must be kept
in sector_size, so adding division by SECTOR_SIZE (moved into
a const expression)
If the thin pool has disabled zeroing (created with -Zn), we at least
clear initial 4KiB of such thin volume (provisions 1st block).
If lvcreate is executed with '-an' command will abort (same way like we for
normal LV - however for normal LV option -Zn may skip clearing completely,
for thin volumes this option is not supported (applies only for pools).
The OpenAIS checkpoint library is going away; therefore, cmirrord must
operate without it. The algorithms the handle the timing of when to send
a checkpoint, the determination of what to send, and which ongoing cluster
requests are relevent with respect to the checkpoints are unaffected. We
need only replace the functions that actually perform the storing/transmitting
and retrieving/receiving of the checkpoint data. Rather than store the
checkpoint data in an OpenAIS checkpoint file, we simply transmit it along
with the message that notifies the incoming node that the checkpoint is
ready.
Drop whole buffer clearing (most messages at <100 bytes).
Just make sure we have always \0 terminated string for strlen() operations.
(before for PIPE_BUF sized messages this was not set).
Addressing somewhat tricky bug here.
Since stdin,stdout,stderr were closed it's been occasionally possible to
see some unexpected messages to be flowing into a clvmd and generating some
randomly sized allocation of many megabytes. Since the message was not
being generated by standard send_message() construction, after some more
testing it apperead to be a debug log message - thus something has flown
to local socket opened on strandard out descriptor.
To fix the issue - use standard file descriptor duplication code for daemons.
For making easier debugging of polling daemon - developer might want to recompile
without modifition of standard file descriptors.
This could be seen as some sort of simple validation - it's not easy to
recognize a valid message for now - but we definitely do not want to
allocate a lot of megabytes in clvmd memory locked daemon when broken
message gets in.
Size of 8000 is just selected for now - possibly there could be much
lower value put in.
Using report_type_t for bitmask is not correct, since we have not defined types
for all bit combinations - so switching to unsigned type, since values of
report_type_t enum are unsigned.
The code fail to account for the case where we just need a single device
in a RAID 4/5/6 array. There is no good way to tell the allocation functions
that we don't need parity devices when we are allocating just a single device.
So, I've used a bit of a hack. If we are allocating an area_count that is <=
the parity count, then we can assume we are simply allocating a replacement
device (i.e. no need to include parity devices in the calculations). This
should make sense in most cases. If we need to allocate replacement devices
due to failure (or moving), we will never allocate more than the parity count;
or we would cause the array to become unusable. If we are creating a new device,
we should always create more stripes than parity devices.
/etc/tmpfiles.d directory holds configuration files for temporary/volatile
files and directories that should be automatically managed. For example,
if we have some parts of the fs hierarchy on tmpfs, we'd like to recreate
some files or directories on every boot so they're always prepared for use.
Systemd can read such configuration files. For now, the lock and run directory
are the ones that are most probably placed on tmpfs. If this is the case, we
can install the configuration by 'make install_tmpfiles_configuration'.