IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
. When using default settings, this commit should change
nothing. The first PE continues to be placed at 1 MiB
resulting in a metadata area size of 1020 KiB (for
4K page sizes; slightly smaller for larger page sizes.)
. When default_data_alignment is disabled in lvm.conf,
align pe_start at 1 MiB, based on a default metadata area
size that adapts to the page size. Previously, disabling
this option would result in mda_size that was too small
for common use, and produced a 64 KiB aligned pe_start.
. Customized pe_start and mda_size values continue to be
set as before in lvm.conf and command line.
. Remove the configure option for setting default_data_alignment
at build time.
. Improve alignment related option descriptions.
. Add section about alignment to pvcreate man page.
Previously, DEFAULT_PVMETADATASIZE was 255 sectors.
However, the fact that the config setting named
"default_data_alignment" has a default value of 1 (MiB)
meant that DEFAULT_PVMETADATASIZE was having no effect.
The metadata area size is the space between the start of
the metadata area (page size offset from the start of the
device) and the first PE (1 MiB by default due to
default_data_alignment 1.) The result is a 1020 KiB metadata
area on machines with 4KiB page size (1024 KiB - 4 KiB),
and smaller on machines with larger page size.
If default_data_alignment was set to 0 (disabled), then
DEFAULT_PVMETADATASIZE 255 would take effect, and produce a
metadata area that was 188 KiB and pe_start of 192 KiB.
This was too small for common use.
This is fixed by making the default metadata area size a
computed value that matches the value produced by
default_data_alignment.
For embeded reshaping operation require higher driver version.
(otherwise we get:
Converting vg/LV1 from raid6 (same as raid6_zr) is directly possible to the following layouts:
raid6_nc
raid6_nr
raid6_la_6
raid6_ls_6
raid6_ra_6
raid6_rs_6
raid6_n_6
lvmpolld ATM is not desingned to preserve interval checking
in the same way the 'lvconvert' tool is doing - so the passed
'-i 40' is not respected and lvmpolld autonomously checks
state of conversion and updates lvm2 metadata and dm tables
when needed.
So skip portion of test that relayed on this and preserve this logic
only for command line invocation and forking of polling process
where the interval of checking is under full control.
Although we primarily want to check externally used libdevmapper
library, out internal all.h is still keeping all symbols
as the original library has - so for simpler compilation keep
using this private copy for defining needed symbols.
Add a little wait loop - since lvconvert started background process
and we need to wait till this bg task initiate its work -
adding ~1s loop should give reasonable enough time to start mirroring.
If a single, standard LV is specified as the cache, use
it directly instead of converting it into a cache-pool
object with two separate LVs (for data and metadata).
With a single LV as the cache, lvm will use blocks at the
beginning for metadata, and the rest for data. Separate
dm linear devices are set up to point at the metadata and
data areas of the LV. These dm devs are given to the
dm-cache target to use.
The single LV cache cannot be resized without recreating it.
If the --poolmetadata option is used to specify an LV for
metadata, then a cache pool will be created (with separate
LVs for data and metadata.)
Usage:
$ lvcreate -n main -L 128M vg /dev/loop0
$ lvcreate -n fast -L 64M vg /dev/loop1
$ lvs -a vg
LV VG Attr LSize Type Devices
main vg -wi-a----- 128.00m linear /dev/loop0(0)
fast vg -wi-a----- 64.00m linear /dev/loop1(0)
$ lvconvert --type cache --cachepool fast vg/main
$ lvs -a vg
LV VG Attr LSize Origin Pool Type Devices
[fast] vg Cwi---C--- 64.00m linear /dev/loop1(0)
main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0)
[main_corig] vg owi---C--- 128.00m linear /dev/loop0(0)
$ lvchange -ay vg/main
$ dmsetup ls
vg-fast_cdata (253:4)
vg-fast_cmeta (253:5)
vg-main_corig (253:6)
vg-main (253:24)
vg-fast (253:3)
$ dmsetup table
vg-fast_cdata: 0 98304 linear 253:3 32768
vg-fast_cmeta: 0 32768 linear 253:3 0
vg-main_corig: 0 262144 linear 7:0 2048
vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0
vg-fast: 0 131072 linear 7:1 2048
$ lvchange -an vg/min
$ lvconvert --splitcache vg/main
$ lvs -a vg
LV VG Attr LSize Type Devices
fast vg -wi------- 64.00m linear /dev/loop1(0)
main vg -wi------- 128.00m linear /dev/loop0(0)
Since the test is currently directly working with live directory,
which can be getting updates from system's udev - add wait
for settling so removal of all known PVs happens after that.
But still this has major influce on behavior of running system,
so the test should never be executed on a user used box.
Commit 989626926c98cd00f0236c4fcac883107d76899d
introduced 2 new tests
lvconvert-raid-takeover-linear_to_raid4.sh and
lvconvert-raid-takeover-raid4_to_linear.sh
which involve raid reshaping.
Bump the checked dm-raid target version to 1.14.0
which has reshape kernel fixes to avoid test suite
runs to hang.
Bump target version to 1.14.0 which contains fixes
for reshape deadlock/corruption to allow tests to
run once the respective fixes show up in kernels.
Remove now superfluous multi-core checks.
Resolves: rhbz1501145
Related: rhbz1514539
Related: rhbz1586123
Related: rhbz1613039