IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
wipe_lv knows it's going to write the device, so it
can open rw from the start. It was opening readonly,
and then dev_write needed to reopen it readwrite.
When hints are invalid and ignored, the list of hints
could be non-empty (from additions before an invalid
hint was found). This confused the calling code which
was checking for an empty list to see if hints were used.
Ensure the list is empty when hints are not used.
This reverts 518a8e8cfbb672c2bf5e3455f1fe7cd8d94eb5b0
"lvmlockd: activate mirror LVs in shared mode with cmirrord"
because while activating a mirror LV with cmirrord worked,
changes to the active cmirror did not work.
When data are growing, adapt also size of metadata.
As we get way too many reports from users doing huge growths of
data portion while keep metadata small and avoiding using monitoring.
So to enhance the user-experience in case user requests grown of
thin-pool (without passing PV list for growth) - lvm2 will automaticaly
grown also the metadata part of thin-pool (if possible).
Add function for estimation of thin-pool metadata size for given size of
data. Function is using already existing internal API so it can
be reused for resize of thin-pool data.
When lvextend extends an LV that is active with a shared
lock, use this as a signal that other hosts may also have
the LV active, with gfs2 mounted, and should have the LV
refreshed to reflect the new size. Use the libdlmcontrol
run api, which uses dlm_controld/corosync to run an
lvchange --refresh command on other cluster nodes.
When an LV is active with a shared lock, a command can be
run to change the LV with --lockopt skiplv (to override the
exclusive lock the command ordinarily requires which is not
compatible with the outstanding shared lock.)
In this case, other commands may have the LV active and may
need to refresh the LV, so print warning stating this.
Udev is running udev-rule action upon 'resume'.
However lvm2 in special case is doing replacement of
'soon-to-be-removed' device with 'error' target for resuming
and then follows actual removal - the sequence is usually quick,
so when udev start action - it can result in 'strange' error
message in kernel log like:
Process '/usr/sbin/dmsetup info -j 253 -m 17 -c --nameprefixes --noheadings --rows -o name,uuid,suspended' failed with exit code 1.
To avoid this - we need to ensure there is synchronization wait for udev
between 'resume' and 'remove' part of this process.
However existing code put strict requirement to avoid synchronizing with
udev inside critical section - but this originally came from requirement
to not do anything special while there could be devices in
suspend-state. Now we are able to see differnce between critical section
with or without suspended devices. For udev synchronization only
suspended devices are prohibited to be there - so slightly relax
condition and allow calling and using 'fs_sync()' even inside critical
section - but there must not be any suspended device.
Allow using caching with VDO.
User can either cache a single vdopool or
a vdo LV - difference when the caching is put-in depends on a use-case
and it's upto user to decide which kind of speed is expected.
Internal detection of SCSI device being in-use by DM mpath has been
performed several times for each component device - this could be
eventually racy - so instead when we do remember 1st. checked result
for device being mpath and use it consistenly over the filter runtime.
Move DM usage into dev_manager.c source file.
Also convert STATUS to INFO ioctl - as that's enough
to obtain UUID - this also avoid issuing unwanted flush on checked DM
device for being mpath.
Activation would not be allowed anyway, but we can
check for these cases early and avoid wasted time in
pvscan managing online files an attempting activation.
This is the default bcache size that is created at the
start of the command. It needs to be large enough to
hold a single copy of metadata for a given VG, or the
VG cannot be read or written (since the entire VG would
not fit into available memory.)
Increasing the default reduces the chances of anyone
needing to increase the default to use their VG.
The size can be set in lvm.conf global/io_memory_size;
the lower limit is 4 MiB and the upper limit is 128 MiB.
When a single copy of metadata gets within 1MB of the
current io_memory_size value, begin printing a warning
that the io_memory_size should be increased.
which defines the amount of memory that lvm will allocate
for bcache. Increasing this setting is required if it is
smaller than a single copy of VG metadata.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.
For users who do not want all of the fields included
in debug lines, let them specify in lvm.conf which
fields to include. timestamp, command[pid], and
file:line fields can all be disabled.
Without this, the output from different commands in a single
log file could not be separated.
Change the default "indent" setting to 0 so that the default
debug output does not include variable spaces in the middle
of debug lines.
When aay was included in the pvscan --cache command,
the activation part was complaining about the unusual
state of the hint file since it had been recreated
just prior.
udev_dev_is_md_component and udev_dev_is_mpath_component
are not used for obtaining the device list, but they still
use libudev for device info. When there are problems with
udev, these functions can get stuck. So, use the existing
obtain_device_list_from_udev config setting to also control
whether these "is component" functions are used, which gives
us a way to avoid using libudev entirely when it's causing
problems.
Whenever thin-pool chunk size is unspecified and left for lvm calculation
try to select the size as nearest highest power-of-2 instead of
just being a multiple of 64KiB.
Fixing recent commit 022ebb0cfebee4ac8fdbe4e0c61e85db1038a115
Resize already has size that needs to be counted with,
otherwise upsizing operation could turn into size reduction one.
Since the parse_vdo_pool_status() become vdo_manip API part,
and there will be no 'dm' matching status parser,
the API can be simplified and closely match thin API here.