IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For non udev path use DM_DEFAULT_NAME_MANGLING_MODE.
Skip this test when using real /dev dir, since udev is not able
to create such device name unless mangled...
This fixes a long standing regression since LVM2 2.02.74 (commit 4efb1d9c,
"Update heuristic used for default and detected data alignment.")
The default PE alignment could be used (via MAX()) even if it was
determined that the device's MD stripe width, or minimal_io_size or
optimal_io_size were not factors of the default PE alignment (either 64K
or the newer default of 1MB, etc). This bug would manifest if the
default PE alignment was larger than the overriding hint that the
device provided (e.g. default of 1MB vs optimal_io_size of 768K).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Support for exclusive activation of snapshots revealed some problems.
When snapshot is created, COW LV is activated first (for clearing) and
then it's transformed into snapshot's COW LV, but it has left the lock
for such LV active in cluster and this lock could not have been removed
from dlm, unless snapshot has been removed within same dlm session.
If the user tried to remove snapshot after rebooting node, the lock was
missing, and COW LV could not have been detached.
Patch modifes the approach in this way:
Always deactivate COW LV for clustered vg after clearing (so it's
activated again via imlicit snapshot activation rule when snapshot is activated).
When snapshot is removed, activate COW LV as independend LV, so the lock
will exist for such LV, but only when the snapshot is active.
Also add test case for testing snapshot removal after cluster reboot.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
New options to 'lvchange' allow users to scrub their RAID LVs.
Synopsis:
lvchange --syncaction {check|repair} vg/raid_lv
RAID scrubbing is the process of reading all the data and parity blocks in
an array and checking to see whether they are coherent. 'lvchange' can
now initaite the two scrubbing operations: "check" and "repair". "check"
will go over the array and recored the number of discrepancies but not
repair them. "repair" will correct the discrepancies as it finds them.
'lvchange --syncaction repair vg/raid_lv' is not to be confused with
'lvconvert --repair vg/raid_lv'. The former initiates a background
synchronization operation on the array, while the latter is designed to
repair/replace failed devices in a mirror or RAID logical volume.
Additional reporting has been added for 'lvs' to support the new
operations. Two new printable fields (which are not printed by
default) have been added: "syncaction" and "mismatches". These
can be accessed using the '-o' option to 'lvs', like:
lvs -o +syncaction,mismatches vg/lv
"syncaction" will print the current synchronization operation that the
RAID volume is performing. It can be one of the following:
- idle: All sync operations complete (doing nothing)
- resync: Initializing an array or recovering after a machine failure
- recover: Replacing a device in the array
- check: Looking for array inconsistencies
- repair: Looking for and repairing inconsistencies
The "mismatches" field with print the number of descrepancies found during
a check or repair operation.
The 'Cpy%Sync' field already available to 'lvs' will print the progress
of any of the above syncactions, including check and repair.
Finally, the lv_attr field has changed to accomadate the scrubbing operations
as well. The role of the 'p'artial character in the lv_attr report field
as expanded. "Partial" is really an indicator for the health of a
logical volume and it makes sense to extend this include other health
indicators as well, specifically:
'm'ismatches: Indicates that there are discrepancies in a RAID
LV. This character is shown after a scrubbing
operation has detected that portions of the RAID
are not coherent.
'r'efresh : Indicates that a device in a RAID array has suffered
a failure and the kernel regards it as failed -
even though LVM can read the device label and
considers the device to be ok. The LV should be
'r'efreshed to notify the kernel that the device is
now available, or the device should be 'r'eplaced
if it is suspected of failing.
Instead of check for lv_is_active() for thin pool LV,
query the whole pool via new pool_is_active().
Fixes a problem when we cannot change discards settings
for active pool device where the actual layer for pool
device was inactive, but thin volumes using thin pool
have been active.
Calling pvscan --cache with -aay on a PV without an MDA would spuriously fail
with an internal error, because of an incorrect assumption that a parsed VG
structure was always available. This is not true and the autoactivation handler
needs to call vg_read to obtain metadata in cases where the PV had no MDAs to
parse. Therefore, we pass vgid into the handler instead of the (possibly NULL)
VG coming from the PV's MDA.
Commit bf2741376d started to use
lv_is_active() instead of call for lv_info & info.exists so
we cover also cluster activated devices.
For snapshost the conversion was not correct and introduced
regression by blocking creation of snapshot of inactive LV.
Fix it by assigning lv_is_active() directly.
Note: we still have minor issue to fix - to make
lv_is_???? function able to return error states since
lv_info() may fail.
I'm not sure what 'BUG's were being encountered when the restriction
to limit lvconvert-raid.sh tests to kernels > 3.2 was added. I do know
that there were BUG's that could be triggered when testing snapshots and
some of the earliest DM RAID available in the kernel. I've taken out
the 3.2 kernel restriction and added a dm-raid >= 1.2 restriction instead.
This will allow the test to run on patched production kernels.
Reset counter after thin pool resize failure.
If the pool goes above threshold, support unmounting
of all thin volumes if the lvextend fails to avoid
overfilling of the pool.
Commit 3501f17fd0 enables a limited set
of metadata updates for partial LV/VGs when issuing lvchange or vgchange.
These tests verify those changes operate as intended.
Separate original raid test and new raid10 test,
so the old could be tested on platforms without raid10 support.
Replace test-unfriendly `ls /dev/mapper` with dmsetup ls
Revert changes to origin lvcreate-large test and use separate
test scripts for raid - so they can be properly skipped when
kernel doesn't support raid targets.
MD's bitmaps can handle 2^21 regions at most. The RAID code has always
used a region_size of 1024 sectors. That means the size of a RAID LV was
limited to 1TiB. (The user can adjust the region_size when creating a
RAID LV, which can affect the maximum size.) Thus, creating, extending or
converting to a RAID LV greater than 1TiB would result in a failure to
load the new device-mapper table.
Again, the size of the RAID LV is not limited by how much space is allocated
for the metadata area, but by the limitations of the MD bitmap. Therefore,
we must adjust the 'region_size' to ensure that the number of regions does
not exceed the limit. I've added code to do this when extending a RAID LV
(which covers 'create' and 'extend' operations) and when up-converting -
specifically from linear to RAID1.
When reformatting the 'lvchange_resync' code in commit
05131f5853, a '!' should have been removed
from the condition that checks for the LV_NOTSYNCED flag on a corelog
mirror LV. The presence of this '!' caused the LV_NOTSYNCED flag to be
cleared when it wasn't present and left when it was present.
It is not allowed to add images to a 'mirror' or 'raid1' LV if the
LV_NOTSYNCED flag is set. We add some up-convert tests to ensure this
behavior is being enforced and that the LV_NOTSYNCED flag is being
properly cleared by 'lvchange --resync'.
(Not updating WHATS_NEW because this is intrarelease.)
This patch adds support for RAID10. It is not the default at this
stage. The user needs to specify '--type raid10' if they would like
RAID10 instead of stacked mirror over stripe.
Commit 8767435ef8 allowed RAID 4/5/6
LV to be extended properly, but introduced a regression in device
replacement - a critical component of fault tolerance.
When only 1 or 2 drives are being replaced, the 'area_count' needed
can be equal to the parity_count. The 'area_multiple' for RAID 4/5/6
was computed as 'area_count - parity_devs', which could result in
'area_multiple' being 0. This would ultimately lead to a division by
zero error. Therefore, in calc_area_multiple, it is important to take
into account the number of areas that are being requested - just as
we already do in _alloc_init.
Reducing a RAID 4/5/6 LV or extending it with a different number of
stripes is still not implemented. This patch covers the "simple" case
where the LV is extended with the same number of stripes as the orginal.
When mirrors are up-converted, a transient mirror layer is put in so that
only the new devices are sync'ed. That transient layer must carry the tags
of the original mirror LV, otherwise it will fail to activate when activation
is regulated by lvm.conf:activation/volume_list. The conversion would then
fail.
The fix is to do exactly the same thing that is being done for linear ->
mirror converting (lib/metadata/mirror.c:_init_mirror_log()). We copy the
tags temporarily for the new LV and remove them after the activation.
Snapshots of RAID logical volumes are allowed (including "raid1"). However,
snapshots of "mirror" logical volumes has been disallowed due to unsolvable
issues inherent to the design. The fact that mirroring (dm-raid1.c) must
stop all I/O as the result of a failure and wait for userspace intervention
can lead to a circular dependency if userspace is simultaneously waiting for
snapshots (on mirrors) to make an I/O update before proceeding.
Various snapshot on mirror tests have been removed as a result.
Add make help target.
Add LVM_TEST_PARALLEL to support parallel runs of tests
Work around the problem the dmsetup table/info may return error
by using dmtable and dminfo function that will use 'should'.
(Error happens when some concurently running process removes table
entry while dmsetup command resolves table entries inside the loop.)
Actually restart was failing for different reason - so pass in proper
location of dmeventd for restart from lvm command and avoid using
the one from /sbin location.
Update pv create test with "" around path.
Indent
Shell improvements - use internal function for checks
Use PVs in "" (LV and VG cannot have spaces)
Several test very starting 'dmeventd' without annoucing
it via prepade_dmeventd.
Fix some of test actually.
When down-converting a RAID1 device, it is the last device that is extracted
and removed when the user does not specify a particular device. However,
when a device is specified (and it is not the last), the device is removed and
the remaining sub-LVs are "shifted down" to fill the hole. This cause problems
when resuming the LV because if the shifted devices were resumed (and thus
renamed) before the sub-LV being extracted, there would be a name conflict.
The solution is to resume the extracted sub-LVs first so that they can be
properly renamed preventing a possible conflict.
This addresses bug 801967.
Test if thin_check is present in system and disable its use, when its missing.
Add testing for poolmetadatasize.
FIXME: Allocation policy for metadata pool might need some relaxing.
(For now it needs to put all block on one PV.)
Reduce disc excercise for some test and focus on LVM testing by
using smaller extent size.
Reduce number of teardown_devs calls and use vg/lvremove instead.
Don't sleep for seconds on pvmove.
FIXME: shell/lvconvert-mirror-basic.sh seems to need more checking.
Test fails for smalled extent size then 512k.
make devices invisible to lvm, but the behaviour of those is slightly different
than of actual missing devices. Running vgscan after re-enabling the device
triggers a metadata repair which is not done by vgremove -ff. This is not a
regression, merely an odd behaviour that has been around even before lvmetad.
Failure to do so results in "Performing unsafe table load while X device(s) are
known to be suspended" errors. While fixing the problem in this way works and
is consistent with the way the mirror segment type does it, it would be nice
to find a solution that uses the generic suspend/resume calls.
Also included in this check-in are additions to the test suite that perform
conversions on RAID LVs under a snapshot. These tests are disabled for the
time being due to a kernel bug that is yet to be tracked down.