IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
To more easily recognize unselected state from select '0' state
add new 'THIN_ZERO_UNSELECTED' enum.
Same applies to THIN_DISCARDS_UNSELECTED.
For those we no longer need to use PASS_ARG_ZERO or PASS_ARG_DISCARDS.
seg->extents_copied has to be defined properly on reducing
the size of a raid LV or conversion from raid5 with 1 stripe
to raid1 will fail.
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
The lv_extend/_lv_reduce API doesn't cope with resizing RaidLVs
with allocated reshape space and ongoing conversions. Prohibit
resizing during conversions and remove the reshape space before
processing resize. Add missing seg->data_copies initialisation.
Fix typo/comment.
In order to support striped raid5/6/10 LV reshaping (change
of LV type, stripesize or number of legs), this patch
introduces more local infrastructure to raid_manip.c
used by followup patches.
Changes:
- add lv_raid_data_copies returning raid type specific number;
needed for raid10 with more than 2 data copies
- remove _shift_and_rename_image_components() constraint
to support more than 10 raid legs
- add function to calculate total rimage length used by out-of-place
reshape space allocation
- add out-of-place reshape space alloc/relocate/free functions
- move _data_rimages_count() used by reshape space alloc/realocate functions
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
In order to support striped raid5/6/10 LV reshaping (change
of LV type, stripesize or number of legs), this patch
introduces infrastructure prerequisites to be used
by raid_manip.c extensions in followup patches.
This base is needed for allocation of out-of-place
reshape space required by the MD raid personalities to
avoid writing over data in-place when reading off the
current RAID layout or number of legs and writing out
the new layout or to a different number of legs
(i.e. restripe)
Changes:
- add members reshape_len to 'struct lv_segment' to store
out-of-place reshape length per component rimage
- add member data_copies to struct lv_segment
to support more than 2 raid10 data copies
- make alloc_lv_segment() aware of both reshape_len and data_copies
- adjust all alloc_lv_segment() callers to the new API
- add functions to retrieve the current data offset (needed for
out-of-place reshaping space allocation) and the devices count
from the kernel
- make libdm deptree code aware of reshape_len
- add LV flags for disk add/remove reshaping
- support import/export of the new 'struct lv_segment' members
- enhance lv_extend/_lv_reduce to cope with reshape_len
- add seg_is_*/segtype_is_* macros related to reshaping
- add target version check for reshaping
- grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal
- enhance libdm deptree code to support data_offset (out-of-place reshaping)
and delta_disk (legs add/remove reshaping) target arguments
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
Previously when lvremove tried to remove 'active' origin,
it had been asking for every 'snapshot' LV separately
and doing individual single snapshot removals first.
To be faster it now deactivates origin before removal
all connected snapshots.
This avoids multiple reloads of dm table for origin volume
which were unnecessary as origin was meant to be removed as well.
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
Add:
- conversion support from striped/raid0/raid0_meta to/from raid10;
raid10 goes by the near format (same as used in creation of
raid10 LVs), which groups data copies together with their original
blocks (e.g. 3-way striped, 2 data copies resulting in 112233 in the
first stripe followed by 445566 in the second etc.) and is limited
to even numbers of legs for now
- related tests to lvconvert-raid-takeover.sh
- typo
Related: rhbz1366296
- support shrinking of raid0/1/4/5/6/10 LVs
- enhance lvresize-raid.sh tests: add raid0* and raid10
- fix have_raid4 in aux.sh to allow lv_resize-raid.sh
and other scripts to test raid4
Resolves: rhbz1394048
With recent commit d6a74025df using
INTERNAL_ERROR while cheking layer LV - it's been noticed mirror
logic currently doesn't do a correct thing during upconversion and
does a full-try instead of checking only allocator capabilities.
This leads to invalid usage of layer.
To keep existing code running before providing a fix, relax
INTERNAL_ERROR just an error and keep the 'code' running.
Once mirror code is fixed, these all check should be switched
to internal errors.
Show proper internal error for failing command when there are some
inconsitencies in sizes of LV and its layer instead of rather
meaningless error code 5.
(Could be hit i.e. if user tried to 'resize' cached LV and then
uncache such LV.)
During rework of resize code this validation check
has been lost (in my resize branch). Upstream
is still not supporting resize of any cache type LV
so needs to be prevented.
Add to commits 87117c2b25 and 0b8bf73a63 to avoid refreshing two
times altogether, thus avoiding issues related to clustered, remotely
activated RaidLV. Avoid need to repeat "lvchange --refresh RaidLV"
two times as a workaround to refresh a RaidLV. Fix handles removal
of temporary *-missing-* devices created for any missing segments
in RAID SubLVs during activation.
Because the kernel dm-raid target isn't able to handle transiently
failing devices properly we need
"[dm-devel][PATCH] dm raid: fix transient device failure processing"
as well.
test: add lvchange-raid-transient-failures.sh
and enhance lvconvert-raid.sh
Resolves: rhbz1025322
Related: rhbz1265191
Related: rhbz1399844
Related: rhbz1404425
External origin could be activated as stand-alone device.
When the last thin LV is removed, external origin is no longer
the external origin and it's layer property was dropped.
Ensure dm table is correct by reloading external origin
(when it's active).
In case any SubLV of a RaidLV transiently fails, it needs
two "lvchange --refresh RaidLV" runs to get it to fully
operational mode again. Reason being, that lvm reloads all
targets for the RaidLV tree but doesn't resume the SubLVs
until after the whole tree has been reloaded in the first
refresh run. Thus the live mapping table of the SubLVs
still point to an "error" mapping and the dm-raid target
can't retrieve any superblock from the MetaLV(s) in processing
the constructor during this preload thus not discovering the
again accessible SubLVs. In the second run, the SubLV targets
map proper (meta)data, hence the constructor discovers those
fine now.
Solve by resuming the SubLVs of the RaidLV before
preloading the respective top-level RaidLV target.
Resolves: rhbz1399844
Instead of clearing multiple rmeta device with sequential activation
process and waiting for udev for every _rmeta device separately,
activate all _rmeta devices first and then clear them and deactivate
afterwards.
Also update some tracing messages.
When anyhing goes wrong during clearing process, always try to
deactivate as much _rmeta devices as possible before fail.
Unconditionally guard there is at least 1/4 of metadata volume
free (<16Mib) or 4MiB - whichever value is smaller.
In case there is not enough free space do not let operation proceed and
recommend thin-pool metadata resize (in case user has not
enabled autoresize, manual 'lvextend --poolmetadatasize' is needed).
The existing code doesn't understand that mirror logs should cling to
parallel LVs (like extending them) instead of avoiding them.
As a quick workaround to avoid lvcreate failures, hard-code
--alloc normal for mirror logs even if the rest of the allocation
used a stricter policy.
https://bugzilla.redhat.com/show_bug.cgi?id=1376532
General RAID and RAID segment type specific checks are added
to merge.c. New static _check_raid_seg() is called on each segment
of a RaidLV (which have just one) from check_lv_segments().
New checks caught some unititialized segment members
which are addressed here as well:
- initialize seg->region_size to 0 in lvcreate.c for raid0/raid0_meta
- initialize list seg->origin_list in lv_manip.c
When volume was lvconvert-ed to a thin-volume with external origin,
then in case thin-pool was in non-zeroing mode
it's been printing WARNING about not zeroing thin volume - but
this is wanted and expected - so nothing to warn about.
So in this particular use case WARNING needs to be suppressed.
Adding parameter support for lvcreate_params.
So now lvconvert creates 'normal thin LV' in read-only mode
(so any read will 'return 0' for a moment)
then deactivate regular thin LV and reacreate in 'final R/RW' mode
thin LV with external origin and activate again.
Commit ca878a3426 changed behavior
or resize operation. Later the code has been futher changed
to skip fs resize completely when size of LV is already matching
and finaly at the most recent resize changeset for resize the
check for matching size has been eliminated as well so we ended
with a request call to resize fs to 0 size in some cases.
This commit reoders some test so the prompt happens just once before
resize of possibly 2 related volumes.
Also extra test for having LV already given size is added, and
whole metadata update is skipped for this case as the only
result would be an increment of seqno.
However the filesystem is still resized when requested,
so if the LV has some size and the resize is resolved to
the same size, the filesystem resize is called so in case FS
would not match, the resize will happen.
A livelock occurs on extension in lv_manip when adjusting the region size,
which doesn't apply to any raid0/raid0_meta LVs (these don't have a bitmap).
Fix by prohibiting the region size adjustment on any such LVs.
- resolves rhbz1354604
Add code to support more LVs to be resized through a same code path
using a single lvresize_params struct.
(Now it's used for thin-pool metadata resize,
next user will be snapshot virtual resize).
Update code to adjust percent amount resize for use_policies.
Properly activate inactive thin-pool in case of any pool resize
as the command should not 'deffer' this operation to next activation.
Use common API design and pass just LV pointer to lv_manip.c functions.
Read cmd struct via lv->vg->cmd when needed.
Also do not try to return EINVALID_CMD_LINE error when we
have already openned VG - this error code can only be returned before
locking VG.
lv_refresh_suspend_resume() has escaped with fail ret code
after failing suspend and could have left many volumes in suspend state.
So always unconditionally call resume also when suspend has failed.
When mirror/raid called copy_percent function to return,
when 100% was supposed to be returned, wrong float 100.0 value
could have been reported back instead of dm_percent_t DM_PERCENT_100.
There is broken API somewhere, since the function here rely on
actively being modifid VG content even when doing 'lvs' operation.
(extents_copies)
Support parsing --chunksize option also when converting.
Now user can use cache pool created with i.e. 32K chunksize,
while in caching user can select 512K blocks.
Tool is supposed to validate cache metadata size is big enough
to support such chunk size. Otherwise error is shown.
When creating LV - in some case we change created segment type
(ATM for cache and snapshot) and we then manipulate with
lv segment according to 'lp' segtype.
Fix this by checking for proper type before accessing segment members.
This makes command like:
lvcreate --type cache-pool -L10 vg/cpool
lvcreate -H -L10 --cachesettings migtation_threshold=10000 vg/cpool
to pass since now tool correctly selects default cache policy.
If there's an activation volume_filter, it might not be possible
to activate the rmeta LVs to wipe them. At least inherit any
LV tags from the parent LV while attempting this.
Commit b64703401d cause regression
when handling stacked resize of pool metadata volume that would
be a raid LV.
Fix it by properly setting up size also for layer extension.
Report proper values for historical LVs in lv_layout and lv_role fields.
Any historical LV doesn't have any layout anymore and the role is "history".
For example:
$ lvs -H -o name,lv_attr,lv_layout,lv_role vg/-lvol1
LV Attr Layout Role
-lvol1 ----h----- none public,history
Add support for making an interconnection between thin LV segment and
its indirect origin (which may be historical or live LV) - add a new
"indirect_origin" argument to attach_pool_lv function.
The add_glv_to_indirect_glvs is a helper function that registers a
volume represented by struct generic_logical_volume instance ("glv")
as an indirect user of another volume ("origin_glv") and vice versa -
it also registers the other volume ("origin_glv") as indirect_origin
of user volume ("glv").
The remove_glv_from_indirect_glvs does the opposite.
The get_or_create_glv is helper function that retrieves any existing
generic_logical_volume wrapper for the LV. If the wrapper does not exist
yet, it's created.
The get_org_create_glvl is the same as get_or_create_glv but it creates
the glv_list wrapper in addition so it can be added to a list.
Add new structures and new fields in existing structures to support
tracking history of LVs (the LVs which don't exist - the have been
removed already):
- new "struct historical_logical_volume"
This structure keeps information specific to historical LVs
(historical LV is very reduced form of struct logical_volume +
it contains a few specific fields to track historical LV
properties like removal time and connections among other LVs).
- new "struct generic_logical_volume"
Wrapper for "struct historical_logical_volume" and
"struct logical_volume" to make it possible to handle volumes
in uniform way, no matter if it's live or historical one.
- new "struct glv_list"
Wrapper for "struct generic_logical_volume" so it can be
added to a list.
- new "indirect_glvs" field in "struct logical_volume"
List that stores references to all indirect users of this LV - this
interconnects live LV with historical descendant LVs or even live
descendant LVs.
- new "indirect_origin" field in "struct lv_segment"
Reference to indirect origin of this segment - this interconnects
live LV (segment) with historical ancestor.
- new "this_glv" field in "struct logical_volume"
This references an existing generic_logical_volume wrapper for this
LV, if used. It can be NULL if not needed - which means we're not
handling historical LVs at all.
- new "historical_lvs" field in "struct volume group
List of all historical LVs read from VG metadata.
Simplify calculation of extents rounding needed for
segment size.
Segment size has to divisible by 'extent count' needed to contain
whole stripe. LVM currently does not support stripes across segment.
In case the stripe size is bigger then extent size,
require bigger rounding.
Internal _alloc_init() is only called from allocate_extents(),
which already does prevent usage of virtual segments.
So mark as internal error early and do not process it any further.
Since we mark cache-pool as 'hidden/private' while it is in-use,
we may still allow user to change it's name.
It should not cause any harm and user may prefer better naming
for a cache-pool in use.
Currently the code creates the log separately after allocating space for
the data and as no data allocation is needed this second time,
total_extents ends up holding zero so use new_extents directly instead.
This option could never have been printed in lvm2 metadata, so it could
be safely removed as it could have been set only as 0.
These configurable setting is supported via metadata profile.
Use single code to evaluate if the percentage value has
crossed threshold.
Recalculate amount value to always fit bellow
threshold so there are not need any extra reiterations
to reach this state in case policy amount is too small.
Before this patch:
$ lvs -a -o name,layout,role test/lvmlock
LV Layout Role
[lvmlock] linear public
With this patch applied:
$ lvs -a -o name,layout,role test/lvmlock
LV Layout Role
[lvmlock] linear private,lockd,sanlock
Certain stacks of cached LVs may have unexpected consequences.
So add a warning function called when LV is cached to detect
such caces and WARN user about them - the best we could do ATM.
When we insert layer we also move status flag-bits for certain LV types,
so internal volume_group structure remains consistent.
(Perhaps it's misuse of 'insert_layer' function and we should have
another similar function for this.)
Basically we aim to maintain the same state as after reading fresh
metadata out of volume group.
Currently we when i.e. cache 'raid' LV - this should transfer 'raidLV' flag
to _corigin LV and cache is no longer a raid.
TODO: bits for stacked devices needs more exact rules.
Change logic and naming of some internal API functions.
cache_set_mode() and cache_set_policy() both take segment.
cache mode is now correctly 'masked-in'.
If the passed segment is 'cache' segment - it will automatically
try to find 'defaults' according to profiles if the are NOT
specified on command line or they are NOT already set for cache-pool.
These defaults are never set for cache-pool.
lvrename should not be done if the LV is active on another host.
This check was mistakenly removed when the code was changed to
use LV uuids in locks rather than LV names.
A segfault was reported when extending an LV with a smaller number of
stripes than originally used. Under unusual circumstances, the cling
detection code could successfully find a match against the excess
stripe positions and think it had finished prematurely leading to an
allocation being pursued with a length of zero.
Rename ix_offset to num_positional_areas and move it to struct
alloc_state so that _is_condition() can obtain access to it.
In _is_condition(), areas_size can no longer be assumed to match the
number of positional slots being filled so check this newly-exposed
num_positional_areas directly instead. If the slot is outside the
range we are trying to fill, just ignore the match for now.
(Also note that the code still only performs cling detection against
the first segment of the LV.)
Keep policy name separate from policy settings and avoid
to mangling and demangling this string from same config tree.
Ensure policy_name is always defined.
Existing messaging intarface for thin-pool has a few 'weak' points:
* Message were posted with each 'resume' operation, thus not allowing
activation of thin-pool with the existing state.
* Acceleration skipped suspend step has not worked in cluster,
since clvmd resumes only nodes which are suspended (have proper lock
state).
* Resume may fail and code is not really designed to 'fail' in this
phase (generic rule here is resume DOES NOT fail unless something serious
is wrong and lvm2 tool usually doesn't handle recovery path in this case.)
* Full thin-pool suspend happened, when taken a thin-volume snapshot.
With this patch the new method relocates message passing into suspend
state.
This has a few drawbacks with current API, but overal it performs
better and gives are more posibilities to deal with errors.
Patch introduces a new logic for 'origin-only' suspend of thin-pool and
this also relates to thin-volume when taking snapshot.
When suspend_origin_only operation is invoked on a pool with
queued messages then only those messages are posted to thin-pool and
actual suspend of thin pool and data and metadata volume is skipped.
This makes taking a snapshot of thin-volume lighter operation and
avoids blocking of other unrelated active thin volumes.
Also fail now happens in 'suspend' state where the 'Fail' is more expected
and it is better handled through error paths.
Activation of thin-pool is now not sending any message and leaves upto a tool
to decided later how to finish unfinished double-commit transaction.
Problem which needs some API improvements relates to the lvm2 tree
construction. For the suspend tree we do not add target table line
into the tree, but only a device is inserted into a tree.
Current mechanism to attach messages for thin-pool requires the libdm
to know about thin-pool target, so lvm2 currently takes assumption, node
is really a thin-pool and fills in the table line for this node (which
should be ensured by the PRELOAD phase, but it's a misuse of internal API)
we would possibly need to be able to attach message to 'any' node.
Other thing to notice - current messaging interface in thin-pool
target requires to suspend thin volume origin first and then send
a create message, but this could not have any 'nice' solution on lvm2
side and IMHO we should introduce something like 'create_after_resume'
message.
Patch also changes the moment, where lvm2 transaction id is increased.
Now it happens only after successful finish of kernel transaction id
change. This change was needed to handle properly activation of pool,
which is in the middle of unfinished transaction, and also this corrects
usage of thin-pool by external apps like Docker.
Synchronize with udev logic before reusing device as snapshot.
This patch tries to fix the problem with udev, where we manage
to 'active' LV for clearing, then we deactivate such device and
active again as member of 'origin&snapshot' tree all in 1 step.
There needs to be a sync point where udev has time to remove all links,
otherwise we race with scans and we may end-up with mysterious 'free'
links in the system pointing to wrong dm names.
This patch tries to fix failing topology cluster tests..
When performing initial allocation (so there is nothing yet to
cling to), use the list of tags in allocation/cling_tag_list to
partition the PVs. We implement this by maintaining a list of
tags that have been "used up" as we proceed and ignoring further
devices that have a tag on the list.
https://bugzilla.redhat.com/983600
Add A_PARTITION_BY_TAGS set when allocated areas should not share tags
with each other and allow _match_pv_tags to accept an alternative list
of tags. (Not used yet.)
Do not keep dangling LVs if they're removed from the vg->lvs list and
move them to vg->removed_lvs instead (this is actually similar to already
existing vg->removed_pvs list, just it's for LVs now).
Once we have this vg->removed_lvs list indexed so it's possible to
do lookups for LVs quickly, we can remove the LV_REMOVED flag as
that one won't be needed anymore - instead of checking the flag,
we can directly check the vg->removed_lvs list if the LV is present
there or not and to say if the LV is removed or not then. For now,
we don't have this index, but it may be implemented in the future.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
Dop unused value assignments.
Unknown is detected via other combination
(!linear && !striped).
Also change the log_error() message into a warning,
since the function is not really returning error,
but still keep the INTERNAL_ERROR.
Ret value is always set later.
Before, we refreshed filters and we did full rescan of devices if
we passed through wiping (wipe_known_signatures fn call). However,
this fn returns success even if no signatures were found and so
nothing was wiped. In this case, it's not necessary to do the
filter refresh/rescan of devices as nothing changed clearly.
This patch exports number of wiped signatures from all the
wiping functions below. The caller (_pvcreate_check) then checks
whether any wiping was done at all and if not, no refresh/rescan
is done, saving some time and resources.
for_each_sub_lv() now scans in depth also pools, however for
rename we actually do want to skip pools.
So add a new for_each_sub_lv_except_pools() to be used by rename,
every other user of for_each_sub_lv() scans every sub LV with pools
included.
This is i.e. necessary for properly working preload of pools
that are using raid arrays.
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
When creating cluster mirrors while they're not supposed to be activated
immediately after creation, we don't need to check for cmirrord availability.
We can just create these mirrors and let the check to be done on activation
later on. This is addendum for commit cba6186325.
When creating/activating clustered mirrors, we should have cmirrord
available and running. If it's not, we ended up with rather cryptic
errors like:
$ lvcreate -l1 -m1 --type mirror vg
Error locking on node 1: device-mapper: reload ioctl on failed: Invalid argument
Failed to activate new LV.
$ vgchange -ay vg
Error locking on node node 1: device-mapper: reload ioctl on failed: Invalid argument
This patch adds check for cmirror availability and it errors out
properly, also giving a more precise error messge so users are able
to identify the source of the problem easily:
$ lvcreate -l1 -m1 --type mirror vg
Shared cluster mirrors are not available.
$ vgchange -ay vg
Error locking on node 1: Shared cluster mirrors are not available.
Exclusively activated cluster mirror LVs are OK even without cmirrord:
$ vgchange -aey vg
1 logical volume(s) in volume group "vg" now active
Since we support device stack of pools over pool
(thin-pool with cache data volume) the existing code
is no longer able to detect orphan _pmspare.
So instead do a _pmspare check after volume removal,
and remove spare afterwards.
More efficient spare volume creation. Save 1 extra commit
and properly activate this volume according to our cluster
activation rules (using lv_active_change() for this).
Since we 'layer' for cache origin which and we support dropping
cache layer - we need to restore origin name in case
the origin LV is more complex target - i.e. raid.
Drop _corig from name
Cleanup and rename parent -> parent_lv.
Revert part of commit 51a29e6056,
it's probably bad idea to continue with any recovery, when
vg_write() or vg_commit() fail - so it's better to leave it as it is.
Let's use this function for more activations in the code.
'needs_exlusive' will enforce exlusive type for any given LV.
We may want to activate LV in exlusive mode, even when we know
the LV (as is) supports non-exlusive activation as well.
lvcreate -ay -> exclusive & local
lvcreate -aay -> exclusive & local
lvcreate -aly -> exclusive & local
lvcreate -aey -> exclusive (might be on any node).
Call check_new_thin_pool() to detect in-use thin-pool.
Save extra reactivation of thin-pool when thin pool is not active.
(it's now a bit more expensive to invoke thin_check for new pools.)
For new pools:
We now active locally exclusively thin-pool as 'public' LV.
Validate transaction_id is till 0.
Deactive.
Prepare create message for thin-pool and exclusively active pool.
Active new thin LV.
And deactivate thin pool if it used to be inactive.
Unlike with thin-pool - with cache we support all args also
directly when create cache volume.
So the result of 'separate' cache-pool creation and setting its
options should give same result as specifying those args
during cache creation.
Cache-pool values are used as defaults if the params are
not specified with cache creation.
Move code for creation of thin volume into a single place
out of lv_extend(). This allows to drop extra pool arg
for alloc_lv_segment() && lv_extend() and makes code
more easier to read and follow.
When we create volumes with chunk size bigger then extent size
we try to round up to some nearest chunk boundary.
Until now we did this for thins - use same logic for
cache volumes.
Refactor lvcreate code.
Prefer to use arg_outside_list_is_set() so we get automatic 'white-list'
validation of supported options with different segment types.
Drop used lp->cache, lp->cache and use seg_is_cache(), seg_is_thin()
Draw clear border where is the last moment we could change create
segment type.
When segment type is given with --type - do not allow it to be changed
later.
Put together tests related to individual segment types.
Finish cache conversion at proper part of lv_manip code after
the vg_metadata are written - so we could correcly clean-up created
stripe LV for cache volume.
We want to print smarter warning message only when
the zeroing was not provided on the first zeroable segment
of newly created LV.
Put warning within _should_wipe_lv function to avoid reevaluation
of same conditions twice.
Hide creation of temporary LVs and print them only in verbose mode.
e.g. hides confusing message about creation of _pmspare
device during creation of pool.
Instead of segtype->ops->name() introduce lvseg_name().
This also allows us to leave name() function 'empty' for default
return of segtype->name.
TODO: add functions for rest of ops->
When we are given an existing LV name - it needs to be allowed
to pass in even restricted name as the LV could have existed
long before we introduced some new restriction on prefix/suffix.i
Fix the regression on name limits and drop restriction to be applied
on any existing LVs - only the new created LV names have to be
complient with current name restrictions.
FIXME: we are currently using restricted names incorrectly in few
other places - device_is_usable() skips restricted names,
and udev flags are also incorrectly set for restricted names
so these LVs are not getting links properly.
Move code to better locations.
Improve test and remove invalid ones
(i.e. no reason to require cache size to be >= then origin).
Correctly comment where the code is doing actual conversion
of other existing volume - we do already a similar thing with
external origins.
Lots of new command line options and combinations is now supported.
Hopefully older syntax still works as well.
lvcreate --cache --cachepool vg/pool -l1
lvcreate --type cache --cachepool vg/pool -l1
lvcreate --type cache-pool vg/pool -l1
lvcreate --type cache-pool --name pool vg -l1
... and many many more ...
Since _pmspare is internal volume move it to
lv_remove_single - so it's automatically removed with
last remove thin-pool.
lv_remove_with_dependencies() is not always used for pool removal.
We are not using already defined segement type names where we could.
There is a lot of other places in device-mapper and LVM2 we have those
hardcoded so we should better finally have a common interface in
libdevmapper to avoid this.
Use of lv_info() internally in lv_check_not_in_use(),
so it always could use with_open_count properly.
Skip sysfs() testing in open_count == 0 case.
Accept just 'lv' pointer like other functions.
The function has 'built-in' lv_is_active_locally check,
which however is not what we need to check in many place.
For now at least remotely active snapshot merge is
detected and for this case merge on next activation is scheduled.
We use adjusted_mirror_region_size() in two different contexts.
Either on command line -
here we do want to inform user about reduction of size.
Or in pvmove activation context -
here we should only use 'verbose' info.
When requesting to reload an LV imrove this API to
automatically reload its lock holding LV as in cluster
only top-level LVs are addressable with lock.
Try to enforce consistent macro usage along these lines:
lv_is_mirror - mirror that uses the original dm-raid1 implementation
(segment type "mirror")
lv_is_mirror_type - also includes internal mirror image and log LVs
lv_is_raid - raid volume that uses the new dm-raid implementation
(segment type "raid")
lv_is_raid_type - also includes internal raid image / log / metadata LVs
lv_is_mirrored - LV is mirrored using either kernel implementation
(excludes non-mirror modes like raid5 etc.)
lv_is_pvmove - internal pvmove volume
Use lv_is_* macros throughout the code base, introducing
lv_is_pvmove, lv_is_locked, lv_is_converting and lv_is_merging.
lv_is_mirror_type no longer includes pvmove.
Use lv_update_and_reload() and lv_update_and_reload_origin()
to handle write/suspend/commit/resume sequence.
In few places this properly handle vg_revert() after suspend failure,
and also ensures there is metadata backup after successful vg_commit().
Fix rename operation for snapshot (cow) LV.
Only the snapshot's origin has the lock and by mistake suspend
and resume has been called for the snapshot LV.
This further made volumes unusable in cluster.
So instead of suspend and resuming list of LVs,
we need to just suspend and resume origin.
As the sequence write/suspend/commit/resume
is widely used in lvm2 code base - move it to
new lv_update_and_reload function.
Fixing problem, when user sets volume_list and excludes thin pools
from activation. In this case pool return 'success' for skipped activation.
We need to really check the volume it is actually active to properly
to remove queued pool messages. Otherwise the lvm2 and kernel
metadata started to go async since lvm2 believed, messages were submitted.
Add also better check for threshold when create a new thin volume.
In this case we require local activation of thin pool so we are able
to check pool fullness.
This patch makes the keyword combinations found in "lv_layout" and
"lv_role" much more understandable - there were some ambiguities
for some of the combinations which lead to confusion before.
Now, the scheme used is:
LAYOUTS ("how the LV is laid out"):
===================================
[linear] (all segments have number of stripes = 1)
[striped] (all segments have number of stripes > 1)
[linear,striped] (mixed linear and striped)
raid (raid layout always reported together with raid level, raid layout == image + metadata LVs underneath that make up raid LV)
[raid,raid1]
[raid,raid10]
[raid,raid4]
[raid,raid5] (exact sublayout not specified during creation - default one used - raid5_ls)
[raid,raid5,raid5_ls]
[raid,raid5,raid6_rs]
[raid,raid5,raid5_la]
[raid,raid5,raid5_ra]
[raid6,raid] (exact sublayout not specified during creation - default one used - raid6_zr)
[raid,raid6,raid6_zr]
[raid,raid6,raid6_nc]
[raid,raid6,raid6_ns]
[mirror] (mirror layout == log + image LVs underneath that make up mirror LV)
thin (thin layout always reported together with sublayout)
[thin,sparse] (thin layout == allocated out of thin pool)
[thin,pool] (thin pool layout == data + metadata volumes underneath that make up thin pool LV, not supposed to be used for direct use!!!)
[cache] (cache layout == allocated out of cache pool in conjunction with cache origin)
[cache,pool] (cache pool layout == data + metadata volumes underneath that make up cache pool LV, not supposed to be used for direct use!!!)
[virtual] (virtual layout == not hitting disk underneath, currently this layout denotes only 'zero' device used for origin,thickorigin role)
[unknown] (either error state or missing recognition for such layout)
ROLES ("what's the purpose or use of the LV - what is its role"):
=================================================================
- each LV has either of these two roles at least: [public] (public LV that users may use freely to write their data to)
[public] (public LV that users may use freely to write their data to)
[private] (private LV that LVM maintains; not supposed to be directly used by user to write his data to)
- and then some special-purpose roles in addition to that:
[origin,thickorigin] (origin for thick-style snapshot; "thick" as opposed to "thin")
[origin,multithickorigin] (there are more than 2 thick-style snapshots for this origin)
[origin,thinorigin] (origin for thin snapshot)
[origin,multithinorigin] (there are more than 2 thin snapshots for this origin)
[origin,extorigin] (external origin for thin snapshot)
[origin,multiextoriginl (there are more than 2 thin snapshots using this external origin)
[origin,cacheorigin] (cache origin)
[snapshot,thicksnapshot] (thick-style snapshot; "thick" as opposed to "thin")
[snapshot,thinsnapshot] (thin-style snapshot)
[raid,metadata] (raid metadata LV)
[raid,image] (raid image LV)
[mirror,image] (mirror image LV)
[mirror,log] (mirror log LV)
[pvmove] (pvmove LV)
[thin,pool,data] (thin pool data LV)
[thin,pool,metadata] (thin pool metadata LV)
[cache,pool,data] (cache pool data LV)
[cache,pool,metadata] (cache pool metadata LV)
[pool,spare] (pool spare LV - common role of LV that makes it used for both thin and cache repairs)
The 'lv_type' field name was a bit misleading. Better one is 'lv_role'
since this fields describes what's the actual use of the LV currently -
its 'role'.
Sort out the lvresize calculation code to handle size changes
specified as physical extents as well as logical extents
and to process mirror resizing and raid extensions correctly.
The 'approx alloc' option was masking the underlying problem.
The lv_type_name function is remnant from old code that reported
only single string for the LV type. LV types are now reported
in a more extended way as keyword list that describe the type
precisely (using lv_layout_and_type fn).
The lv_type_name was used in some error messages to display the
type of the LV so just reinstate the old messages back referencing
the type directly with a string - this is enough for error messages.
They don't need to display the LV type as precisely as it's used
on lvs output (which is optimized for selection anyway).
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg -wI-a----- linear linear
[pvmove0] vg p-C-aom--- mirror mirror,pvmove
(added "mirror" for pvmove LV)
$ lvs -a -o name,vg_name,attr,layout,type
LV VG Attr Layout Type
lvol0 vg ori------- linear external,multiple,origin,thin
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
lvol2 vg Vwi-a-tz-- thin snapshot,thin
lvol3 vg Vwi-a-tz-- thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg Twi-ao---- linear data,pool,thin
[pool_tmeta] vg ewi-ao---- linear metadata,pool,thin
(added "multiple" for external origin used for more than one
thin snapshot - lvol0 in the example above)
Thin snapshots having external origins missed the "snapshot" keyword for
lv_type field. Also, thin external origins which are thin devices (from
another pool) were not recognized properly.
For example, external origin itself can be either non-thin volume (lvol0
below) or it can be a thin volume from another pool (lvol3 below):
Before this patch:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
Internal error: Failed to properly detect layout and type for for LV vg/lvol3
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin thin
lvol3 vg ori---tz-- pool unknown external,origin,thin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
- lvol2 as well as lvol4 have missing "snapshot" in type field
- lvol3 has unrecognized layout (should be "thin"), but has double
"thin" in lv_type which is incorrect
- (also there's double "for" in the internal error message)
With this patch applied:
$ lvs -o name,vg_name,attr,pool_lv,origin,layout,type
LV VG Attr Pool Origin Layout Type
lvol0 vg ori------- linear external,origin,thin
lvol2 vg Vwi-a-tz-- pool lvol0 thin snapshot,thin
lvol3 vg ori---tz-- pool thin external,origin,thin
lvol4 vg Vwi-a-tz-- pool1 lvol3 thin snapshot,thin
pool vg twi-a-tz-- pool,thin pool,thin
pool1 vg twi-a-tz-- pool,thin pool,thin
The maximum stripe size is equal to the volume group PE size. If that
size falls below the STRIPE_SIZE_MIN, the creation of RAID 4/5/6 volumes
becomes impossible. (The kernel will fail to load a RAID 4/5/6 mapping
table with a stripe size less than STRIPE_SIZE_MIN.) So, we report an
error if it is attempted.
This is very rare because reducing the PE size down that far limits the
size of the PV below that of modern devices.
metadata/lv_manip.c:269: warning: declaration of "snapshot_count" shadows a global declaration
There's existing function called "snapshot_count" so rename the
variable to "snap_count".
The lv_layout and lv_type fields together help with LV identification.
We can do basic identification using the lv_attr field which provides
very condensed view. In contrast to that, the new lv_layout and lv_type
fields provide more detialed information on exact layout and type used
for LVs.
For top-level LVs which are pure types not combined with any
other LV types, the lv_layout value is equal to lv_type value.
For non-top-level LVs which may be combined with other types,
the lv_layout describes the underlying layout used, while the
lv_type describes the use/type/usage of the LV.
These two new fields are both string lists so selection (-S/--select)
criteria can be defined using the list operators easily:
[] for strict matching
{} for subset matching.
For example, let's consider this:
$ lvs -a -o name,vg_name,lv_attr,layout,type
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tdata_rimage_0] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_1] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_2] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_3] vg iwi-aor--- linear image,raid
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rimage_0] vg iwi-aor--- linear image,raid
[pool_tmeta_rimage_1] vg iwi-aor--- linear image,raid
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
thin_vol1 vg Vwi-a-tz-- thin thin
thin_vol2 vg Vwi-a-tz-- thin multiple,origin,thin
Which is a situation with thin pool, thin volumes and thin snapshots.
We can see internal 'pool_tdata' volume that makes up thin pool has
actually a level10 raid layout and the internal 'pool_tmeta' has
level1 raid layout. Also, we can see that 'thin_snap1' and 'thin_snap2'
are both thin snapshots while 'thin_vol1' is thin origin (having
multiple snapshots).
Such reporting scheme provides much better base for selection criteria
in addition to providing more detailed information, for example:
$ lvs -a -o name,vg_name,lv_attr,layout,type -S 'type=metadata'
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
(selected all LVs which are related to metadata of any type)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={metadata,thin}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs which hold metadata related to thin)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={thin,snapshot}'
LV VG Attr Layout Type
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
(selected all LVs which are thin snapshots)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout=raid'
LV VG Attr Layout Type
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid layout, any raid layout)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout={raid,level1}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid level1 layout exactly)
And so on...
Make lvresize -l+%FREE support approximate allocation.
Move existing "Reducing/Extending' message to verbose level
and change it to say 'up to' if approximate allocation is being used.
Replace it with a new message that gives the actual old and new size or
says 'unchanged'.
Fix get_pool_params to only read params.
Add poolmetadataspare option to get_pool_params.
Move all profile code into update_pool_params.
Move recalculate code into pool_manip.c
The get_lv_type_name helps with translating volume type
to human readable form (can be used in reports or
various messages if needed).
The lv_is_linear and lv_is_striped complete the set of
lv_is_* functions that identify exact volume types.
Support remove of thin volumes With --force --force
when thin pools is damaged.
This way it's possible to remove thin pool with
unrepairable metadata without requiring to
manually edit lvm2 metadata.
lvremove -ff vg/pool
removes all thin volumes and pool even when
thin pool cannot be activated (to accept
removal of thin volumes in kernel metadata)
Since vg_name inside /lib function has already been ignored mostly
except for a few debug prints - make it and official internal API
feature.
vg_name is used only in /tools while the VG is not yet openned,
and when lvresize/lvcreate /lib function is called with VG pointer
already being used, then vg_name becomes irrelevant (it's not been
validated anyway).
So any internal user of lvcreate_params and lvresize_params does not
need to set vg_name pointer and may leave it NULL.
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
The list of strings is used quite frequently and we'd like to reuse
this simple structure for report selection support too. Make it part
of libdevmapper for general reuse throughout the code.
This also simplifies the LVM code a bit since we don't need to
include and manage lvm-types.h anymore (the string list was the
only structure defined there).
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
Perform two allocation attempts with cling if maximise_cling is set,
first with then without positional fill.
Avoid segfaults from confusion between positional and sorted sequential
allocation when number of stripes varies as reported here:
https://www.redhat.com/archives/linux-lvm/2014-March/msg00001.html
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
Since the usability problem were fixed, we can use this function.
Cleanup orphan LVs with TEMPORARY flags
(reduces couple blkid error reports, but couple of them
is still left...)
Since cache segment is purely virtual mapping, it has nothing for
discard. Discardable is cache origin here which is now
properly removed on 'delete' phase.
Plain lv_empty() call needs to only detach cache origin and leave
origin unchanged.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.
Use proper vgmem memory pool for allocation of LV name in the vg
and check if new renamed LV is a valid name.
TODO: validation should really use also VG name, othewise we are not
able to tell "vgname-lvname" will be valid.
Create a separate function to validation snapshot min chunk value
and relocate code into snapshot_manip file.
This function will be shared with lvconvert then.
When we create thin-pool we have used trick to keep
volume active, but since we now support TEMPORARY flag,
we could just localy active & deactive metadata LV,
and let the thinpool through normal activation process.